
Property-Driven Scenario Integration

Jewgenij Botaschanjan and Alexander Harhurin
Technische Universität München Department of Informatics

Boltzmannstr. 3, 85748 Garching, Germany
{botascha,harhurin}@in.tum.de

Abstract—Scenario-based specifications have gained wide
acceptance in requirements engineering. However, scenarios
are not appropriate to describe global, system-wide invariants.
Thus, a specification often consists of scenarios and universal
properties. In order to obtain a consistent specification, the
scenarios must be integrated in a way which does not violate
the properties. However, manual integration of scenarios is an
error-prone and laborious process.

In the presented paper we suggest a synthesis algorithm
for automatic integration of system scenarios to an overall
specification with guaranteed satisfaction of system-wide safety
properties. The main idea is to compute inter-scenario priori-
ties, which disable certain scenarios if they violate a property.

Keywords-Scenario Integration, Automated Scenario Pri-
oritization, Feature Interaction, Model Merging, Controller
Synthesis

I. INTRODUCTION

Rapid increase in the amount and importance of different
software-based functions as well as their extensive interac-
tion are just some of the challenges that are faced during
the development of reactive systems. Most serious errors
in safety-critical systems occur due to inconsistencies in
specifications, which may result from different stakehold-
ers’ views, different hypothetical scenarios, etc. The more
complex the systems become, the more important it is to
support validation and analysis already in the requirements
engineering phase.

Due to their intuitive notation, scenario-based specifica-
tions of system behavior have gained wide acceptance in
early development stages. A scenario specifies a sequence
of events, that the system can receive/send from/to its
environment. One of the advantages of such specifications
is that scenarios enable the definition of only the relevant
(partial) behavior of the system. Instead of having to study
the complete specification of a system, we can focus on
particularly interesting aspects of the behavior. Scenarios do
not communicate directly: interactions only occur between
the system and its environment. The reason for this is that the
specification model should abstract from realization details

This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “SPES2020, 01IS08045A” and by
the German Research Foundation (DFG), grant “Inserve III, BR 887/19-3”.
The responsibility for this article lies with the authors.

like internal interfaces or protocols and describe the system
from the black-box view.

Scenarios provide examples of the intended system behav-
ior, i.e., interaction patterns the system might show. The way
how these patterns are integrated into an overall behavior
is described by universal properties (or system invariants),
which constrain the set of behaviors specified by scenarios.
These properties, e.g., given as LTL formulas, concern the
overall behavior rather than a single scenario and have to
be fulfilled by any behavior. One could say, the properties
define relationships between single scenarios. These rela-
tionships can be expressed in terms of prioritizations of one
scenario over another in certain situations.

In light of these observations, we introduce a mathe-
matical framework to model scenario-based specifications
of multifunctional reactive systems. In our approach, the
system functionality is specified as a set of partial models
of the overall behavior. In other words, the overall behavior
is specified from different viewpoints by a set of scenarios.
These scenarios are formalized by means of I/O automata.
The combination of these scenarios according to their pri-
orities yields the overall specification of the system.

In the presented paper, we focus on the automatic syn-
thesis of priorities between scenarios according to safety
properties. Thereby, the main goal is to ensure that all safety
properties always hold in the overall specification. Given a
set of scenarios and a set of properties, our synthesis algo-
rithm automatically determines whether the properties hold.
Otherwise, it yields a set of priorities between scenarios such
that their combined behavior fulfills all properties.

Running Example: The concepts introduced in the
remainder of the paper will be illustrated on a fragment
of a specification originally written and implemented for
“Advanced Technologies and Standards” of Siemens, Sector
Industry. The considered bottling plant system comprises
several distributed subsystems: to transport empty bottles
from a storehouse to the bottling plant, fill bottles with
items, seal them, and transport them back to the storehouse.
All these systems are operated by a central control unit
(CU) which provides a user interface to receive commands
and display the system status, as well as a device interface
to send/receive control signals to/from the subsystems. Al-
though there are over 40 scenarios of system behavior, in
this paper we consider a small subset only, concerning the

interplay between the CU and the conveyor belt. Among
other things, the user can start and stop the conveyor.
There is also an emergency brake available. When the
emergency brake is activated, the CU immediately switches
the conveyor off. In this case, the CU is not allowed to
switch the system on and the emergency lamp flashes red
until an abolition of the emergency command is received.

Outline: This paper is organized as follows. In Sec. II,
we compare our work to related approaches. In Sec. III,
the operational semantics of the proposed scenario-based
specification is presented. Sec. IV is the core of the pa-
per. There, we introduce our algorithm for the automatic
synthesis of priorities between scenarios according to given
safety properties. Finally, we show how our approach is
implemented in a CASE tool in Sec. V and we conclude
the paper in Sec. VI.

II. RELATED WORK

The presented work is based on a theoretical framework
introduced by Broy [1] where the notion of partial behavior,
decomposition, and refinement are formally introduced. This
framework proposes to model behaviors as partial stream
processing functions. However, it does not cover several
relevant issues such as an operational semantics, combina-
tion of partial behaviors of the same system, or automatic
prioritization of functions.

The idea of property-ensuring synthesis as first introduced
by the Ramadge-Wonham framework [2] for discrete event
systems (DES) comprises the search for a component (a
supervisor), which controls a given component (a plant)
according to a certain property. The supervisor is synthesized
by composing the plant and the property automaton. The
main idea of the framework has been incorporated into
various further approaches, some of which are discussed
below. It also serves as the foundation of our work. However,
the particular problem statements differ. A supervisor is
constructed to feed inputs into the plant and observe outputs.
Our prioritization observes inputs of the system and activates
or deactivates system functions.

The feature integration as a conventional synthesis prob-
lem is presented in [3]. There, the base system (plant) must
be controlled in order to fulfill a given set of specifications.
The features (supervisors) synthesized for this purpose can
be composed with the plant according to a given linear prior-
ity order. Then, a specification is satisfied by the composition
only when it does not conflict with a higher-prioritized one.
In contrast, our method provides a controller which always
satisfies all properties.

The framework for scheduler synthesis presented by Al-
tisen et al. [4] resembles the synthesis problem of our
work. Schedulers are synthesized according to the time
behavior of system tasks, time constraints, and/or general
scheduling policies. The scheduler decides when a task
should be activated driven by certain events, e.g., timeouts,

and does not influence the inputs of its tasks. However, the
scheduler synthesis can guarantee the compliance with time
constraints only since it is based solely on a timing model
of system functions (tasks). The proposed approach ensures
the fulfillment of more general functional system properties.

The closest approach to our work is the framework
introduced by Uchitel et al. [5], who support synthesis of
behavior models from both property and scenario models.
Similar to our approach, their combination is defined as
a minimal common observable refinement of both models.
However, this combination is defined for consistent models
only, i.e., both models must have a common refinement. In
general, this is not guaranteed in the 3-valued semantics
of [5]. Our work does not has such limitations. In the
case of inconsistencies, prioritizations between scenarios are
synthesized to ensure that the overall behavior matches the
desired properties. Sabetzadeh et al. introduced a framework
in [6], which merges models w.r.t. given relations between
them, which can not be violated. However, these merges
are not synthesized automatically and result from a manual
negotiation process.

Damas et al. [7] also consider scenarios and safety proper-
ties as an input to synthesis. Their goal, similar to numerous
further scenario-to-automata synthesis approaches, is to in-
terleave scenarios in a way, which respects given properties.
Inconsistencies between properties and scenarios do not
reduce the number of possible system behaviors. In contrast,
our approach is able to reveal and avoid inconsistencies
between scenarios and/or properties.

III. SERVICE-ORIENTED DEVELOPMENT

This section introduces a formal framework for modeling
specifications of a system. Thereby, the basic building block
of the model is a service – a formal representation of a
scenario1 (cf. Sec. III-A). The services can be combined to
service-based specifications (cf. Secs. III-B and III-C). The
property satisfaction problem of a service-based specifica-
tion is dealt with in Sec. III-D.

A. Service

A service has a syntactic interface consisting of the sets of
typed input and output ports. Fig. 1(a) depicts the syntactic
interface of a service from our running example. There, input
and output ports are depicted by empty and filled circles,
resp.

The semantics of a service is described by an I/O automa-
ton. This is a tuple S = (V, I, T) consisting of variables V ,
initial states I, and a transition relation T . V consists of
mutually disjoint sets of typed variables I , O, L. The type
of a variable v ∈ V is denoted by the function ty(v), which
maps v to the set of all possible valuations. The variables
from I and O are the input and output ports of the service

1The synthesis of single services from scenarios (e.g., in form of MSCs)
is not in scope of this paper. The interested reader is referred to [8].

Switch
switch comm

statusstate

(a) Interface

off on

2: switch?on∧state?off/
status!on∧comm!on

1: switch?¬on∧state?off/
status!off∧comm!ε

3: switch?¬off∧state?on/
status!on∧comm!ε

4: switch?off∧state?on/
status!off∧comm!off

5: state?off/status!off

(b) Automaton

Figure 1. Service Switch

interface, resp. L is the set of local variables. A state of S
is a valuation α that maps every variable from V to a value
of its type. Λ(V) is the set of all type-correct valuations for
a set of variables V , i.e., for all α ∈ Λ(V) and all v ∈ V
holds α(v) ∈ ty(v).

We define the following relations on variable valuations:
for α, β ∈ Λ(V) and Z ⊆ V , α Z= β denotes the equality of
variable valuations from Z, i.e., ∀v ∈ Z : α(v) = β(v). For
an assertion Φ with free variables from V and α ∈ Λ(V),
we say that α satisfies Φ, written as α ` Φ, iff Φ yields
true after replacing its free variables with values from α.
Finally, the priming operation on a variable name v yields a
new variable v′ (the same applies to variable sets). Priming
of valuation functions yields a mapping of equally valued
primed variables, i.e., for given α ∈ Λ(V), α′ is defined by
∀v ∈ V : α(v) = α′(v′). Priming is used to argue about the
current and next state within the same logical assertion. For
Φ with free variables from V ∪V ′ and α, β ∈ Λ(V) we also
write α, β′ ` Φ to denote that Φ yields true after replacing
free unprimed variables by values from α and primed ones
by values from β.
I is an assertion over L∪O characterizing the initial states

of the system. T is a transition assertion over V ∪ V ′. In
T the satisfying valuations of unprimed variables describe
the current state while the valuations of the primed ones
constrain the possible successor states. By enabling several
satisfying successor state valuations for one current state,
we can model non-determinism. A transition is not allowed
to constrain primed input and unprimed output variables.
By this, we disallow a service to constrain its own future
inputs, and enforce the clear separation between the local
state (read/write) and the outputs (write only).

We instantiated the above service model for an extended
version of I/O automata used in our CASE tool. As in
the classical I/O automata [9], a transition leads from one
control state to another and might consist of four logical
parts: precondition, input pattern, post-condition and output
pattern. In our concrete syntax i?x denotes an input pattern,
which evaluates to true if the variable i ∈ I has the value
x and o!x an output pattern, which is satisfied by an as-

signment of value x to the output variable o′ ∈ O′. Fig. 1(b)
shows the specification of service Switch from our running
example, which formalizes the following scenario of the CU.
The user can switch the conveyor on/off, by putting one of
the two commands (on or off) in. Additionally, the CU
receives the state of the conveyor through the port state.
If the conveyor is in state off and the user switches it
on, in the next step the CU sends command on through its
port comm to the conveyor, as well as message on through
port status to the user display (cf. Transition 2). Note,
Transition 5 does only reference two of the four existing
ports. This means that the remaining ports are allowed to
have arbitrary values within their respective type domains
when the automaton executes this transition (we speak of
underspecification). For example, the port comm may have
one of the following values ty(comm) = {on, off , ε}. ε
denotes an empty message.

In order to be able to reason about transition steps,
we define the successor state of some valuation α as
Succ(α) def= {β | α, β′ ` T }. The predicate En yields true
if a service can make a step: En(α) def⇔ Succ(α) 6= ∅. If
En(α) holds, we say that the service is enabled in state α.

The language of a service automaton consists of valuation
sequences 〈α0α1 . . . 〉, called runs, such that α0 ` I holds
and for all i ∈ N either αi+1 ∈ Succ(αi) or αi is the
last element in the sequence. By this, the semantics of our
service is input-disabled. The prefix-closed set of all runs of
a service S is denoted by 〈〈S〉〉. The set of all reachable states
of S is denoted by Reach(S). Finally, we lift the

(.)=-operator
to runs and sets of runs/valuations. For r1, r2 ∈ 〈〈S〉〉 and
W ⊆ V we define r1

W= r2 as ∀i ∈ N : r1.i
W= r2.i, where r.i

stands for the ith valuation in r. For two sets of valuations
A, B we define A

W

⊆ B as ∀a ∈ A : ∃b ∈ B : a W= b and
A

W= B
def⇔ A

W

⊆ B ∧ B
W

⊆ A. The same holds for two sets
of runs.

B. Service Combination
The combination of services yields a service again. This

directly reflects the idea that each scenario adds a certain
new aspect of the specified behavior. The combination of
these fragmented aspects yields the overall system behavior.

In our framework, the (parallel) service combination ac-
cepts all inputs, which the single services can deal with as
long as the outputs produced by these services are unifiable
(not contradictory). The reaction of the combination coin-
cides with the reactions specified by the single services.

The combination of two services is defined only if input
ports of one service and output ports of the other do not
overlap with each other and with local variables: (I1∪L1)∩
(O2 ∪ L2) = (O1 ∪ L1) ∩ (I2 ∪ L2) = ∅ and their common
variables V1 ∩ V2 have the same type. Then, we speak of
combinable services.

For two combinable services S1 and S2, their combination
C

def= S1 ‖ S2 is defined by C def= (VC , IC , TC), where IC
def=

EBrake
commstate

emergeBrake

(a) Interface

eOff eOn

2: state?em/
comm!off∧emerg!on

1: state?¬em∧eBrake?¬em
/emerg!off

4: eBrake?¬ab/
comm!ε∧emегg!on

5: eBrake?ab/emerg!off

3: eBrake?em/
comm!off∧emerg!on

(b) Automaton

Figure 2. Service EBrake

I1∪I2, OC
def= O1∪O2, LC

def= L1∪L2, VC
def= IC∪LC∪OC ,

IC
def= I1∧I2. TC is described by the successor function be-

low. The combined automaton makes a step if either the cur-
rent input can be accepted by both single services, and their
reactions are not contradictory, or the input can be accepted
by one of both services only. In the latter case, the local
variables of the not enabled service (i.e., the service with
¬En(α)) are not modified, and its output variables (not com-
mon with the first service) are unrestricted. Formally, the set
of successor states of the combination is defined as follows:

Succ(α) def= {β | α, β′ ` T1 ∧ T2}⋃
i,j∈{1,2},i6=j

{β | α, β′ ` Ti ∧ ¬EnSj (α) ∧ α
Lj= β},

where EnSj (α) is true iff Sj is enabled in state α.
To illustrate the concept of combination, we consider a

further scenario concerning the emergency brake from our
example. The CU switches the system off if the user puts
the emergency brake on (message em on port eBrake) or a
critical state message is received from the conveyor (message
em on port state). The CU is not allowed to switch the
system on and the emergency lamp flashes until an abolition
of the emergency (ab) is received on eBrake. The service
in Fig. 2 formalizes this scenario.

The combination of services Switch and EBrake re-
sults in the automaton in Fig. 3(a) (without transitions
marked by dashed ovals). There, the labels of transitions
are of the form ts ∧ te, where ts and te are the transition
numbers from Fig. 1(b) and 2(b), resp. A label of the form
> ∧ te identifies situations where service Switch is not
enabled. A transition with a label l1 ∨ l2 is an abbreviation
of two transitions with labels l1 and l2, resp.

C. Prioritized Combination

Usually, some events or scenarios explicitly have a higher
priority in specifications than others. For example, the sys-
tem reaction in the case of emergency has higher priority
than the normal-case behavior. In order to be able to reflect
this in our service model, we introduce the notion of a

off/eOff on/eOff

off/eOn on/eOn

1∧1

1∧4 ∨ T∧4∧1

1∧5

2∧1

2∧5

3∧1

3∧4 ∨ T∧4 ∧1

3∧5

4∧1 ∨ 5∧1

4∧3

4∧5 ∨ 5∧3 ∨ 5∧5

5∧4

T∧2 ∨
∨T∧3∧1

T∧2 ∨
T∧3∧1

(a) Service Combination

1: state?em∨eBrake?¬ε {p=2}

2: state?¬em∧eBrake?ε {p=0}

(b) Priority

Figure 3. Behavior Specifications

prioritized combination. It allows an individual service to
take control over other services depending on specific input
histories. Thereby, we can express different relationships
between services without any modifications on them.

The prioritized combination temporally allows a service to
take priority over another service. Therefore the combination
is controlled by a special service SP with the interface
consisting of all input ports of both services. Transitions of
SP might prioritize one of both services. If the current input
enables a transition of SP and this transition prioritizes ser-
vice S2, only S2 is executing – the local state of S1 remains
unmodified, the output variables exclusively controlled by
S1 are not subject to any restrictions. If the current input
does not enable any transition of SP or the enabled transition
prioritizes no service, the combination behaves like the un-
prioritized one. Thus, the priority determines certain inputs
for which the system behavior should coincide with the
behavior of one of both services only.

The prioritized combination PC def= S1‖P S2 is defined for
a pair of combinable services S1, S2 and a special priority
service P def= (VP , IP , TP , p) with VP

def= IP]LP and LP ∩
(L1 ∪ L2) = ∅ by PC def= (VPC , IPC , TPC), where IPC

def=
I1 ∪ I2 ∪ IP , OPC

def= O1 ∪ O2, LPC
def= L1 ∪ L2 ∪ LP ,

VPC
def= IPC∪LPC∪OPC , IPC

def= IP∧I1∧I2. The function
p : Λ(VPC) × Λ(VPC) → P({0, 1, 2}) defines whether S1,
S2, or no service is prioritized by a certain transition step of
P . For example, p(α, β) = {0, 2} with α, β ∈ Λ(VPC) and
α, β′ ` TP means that none of services or service S2 may
be prioritized. In other words, the combined step of both
services as well as the sole step of service S2 belong to the
behavior of PC . Even if service S1 can take the step (α, β)
in isolation (i.e., β ∈ SuccS1(α)), this step does not belong
to the behavior of PC . Finally, if p(α, β) = ∅, the behavior
is no transition of PC .
TPC is described by the successor function below. It

is defined over the transition set TC of the unprioritized

combination of S1 and S2:

Succ(α) def= {β | (α, β′ ` TC ∧ ¬TP) ∧ α LP= β}
∪ {β | (α, β′ ` TC ∧ TP) ∧ 0 ∈ p(α, β)}⋃

i,j∈{1,2},i6=j

{β | (α, β′ ` Ti∧TP)∧i ∈ p(α, β)∧α
Lj= β}.

If P is not enabled or its enabled transition is prioritized
by 0, the behavior of S1 ‖P S2 coincides with the behavior
of S1 ‖ S2. In the case when an enabled transition of P
prioritized by i ∈ {1, 2}, the behavior of S1 ‖P S2 coincides
with the common behavior of Si and P .

Returning to our running example, it makes sense to
prioritize the emergency break signals eBrake?em and
state?em. We require that the combined system must
behave like service EBrake if one of these signals arrives.
The priority service which prioritizes emergency signals is
depicted in Fig. 3(b). While Transition 1 prioritizes service
EBrake, Transition 2 prioritizes no service. The prioritized
combination of Switch and EBrake with regard to the pri-
ority service results in the automaton in Fig. 3(a) (including
formulas enclosed in dashed ovals). Thereby, the transitions
of the form t1∧t2 (not enclosed) belong to the unprioritized
behavior (i.e., the priority automaton executes Transition 2).
The transitions of the form >∧ t2 ∧ 1 (enclosed) belong to
the prioritized behavior (i.e., the priority automaton executes
Transition 1). Whenever an emergency signal has arrived,
this combination behaves like service EBrake (transitions
marked by dashed ovals), otherwise the behavior is identical
to the unprioritized combination from the last section.

Both un- and prioritized combination operators are well-
defined. The un-prioritized combination is a special case
of the prioritized one. It is commutative and associative.
The prioritized combination is in general non-associative
and non-commutative, however, it is distributive. All these
properties are shown in [10].

D. Property Satisfaction

In the previous sections we introduced the notion of
the system as a combination of services provided to its
environment. However, in practice, there also exist require-
ments concerning the overall behavior rather than a single
scenario. These requirements or properties of the system
are orthogonal to its services as they involve the system as
a whole. A scenario describes a behavioral pattern, which
may be observed during a system run, while a property must
always be satisfied by every system run. In the latter case,
we speak of system invariants. For example, independently
of a particular scenario, the CU has to switch the system
off whenever the user puts the emergency brake on or a
critical state message is received from the conveyor. In the
following, we introduce the notion of a property and that
of the property satisfaction and reduce the problem of the
safety property satisfaction to the reachability problem.

A property characterizes a set of allowed behaviors. In our
settings the behaviors are sequences of variable valuations
from some variable set. We assume that every safety property
ϕ over variable set Vϕ = I] L] O is characterized by a
property service Sϕ = (Vϕ, I, T). This assumption is based
on the idea that for any temporal formula we can construct
an automaton that accepts precisely the computations that
satisfy the formula [11]. Since we consider safety properties
only, the constructed automaton is finite. Sϕ is assumed to be
deterministic and input complete. Formally, for all reachable
valuations α, β, γ ∈ Reach(Sϕ) the following relations hold(

β |= I ∧ γ |= I
)
⇒ β

L= γ

∧
(
β, γ ∈ SuccSϕ(α)

)
⇒ β

L= γ, (1)
SuccSϕ(α) 6= ∅. (2)

The (internal) determinism is necessary in order to make the
decision about the satisfaction of a property locally, i.e., if an
error state is not reachable from a state α, the system never
violates the property after reaching α. This is not necessarily
true in the non-deterministic case. The determinization of
a service is concerned in Sec. IV-C. An input-complete
property service explicitly allows an arbitrary reaction to
the inputs, for which the behavior is not constrained by the
property. The input completeness can be easily achieved by
complementing each state by missing inputs leading to any
outputs (we speak of chaos completion).

A service satisfies a property if all its runs belong to
the set of behaviors allowed by the property. Thereby, we
consider properties, which constrain dependencies between
input and output variables. Local variables of a service are
not considered. We denote the satisfaction of the property ϕ
over Vϕ by the service S over V by S |= ϕ. The satisfaction
is defined as

〈〈S〉〉
V∩Vϕ
⊆ 〈〈Sϕ〉〉, (3)

only if Sϕ and S are combinable (cf. Sec. III-B). In the rest
of the paper we always assume services and properties to
be combinable. Next, we adapt the well-known reduction of
the safety property satisfaction to a reachability problem for
the notion of our services.

Error State & Error Runs: A run not contained in
the allowed set violates the property. Thus, we complement
property services by transitions leading to an error state
(cf. Fig. 4 for the complemented emergency property). An
error state is any state α in which the special new variable
e (ty(e) = B, e /∈ V) is mapped to true. Let S = (V, I, T)
be a service, then, we define Ŝ def= (V ∪ {e}, Î, T̂) for all
α, β ∈ Λ(V ∪ {e}) as

α ` Î def⇔
(
α ` I ⇔ ¬α(e)

)
,

α, β′ ` T̂ def⇔
(
α, β′ ` T ∧ ¬α(e) ∧ ¬β(e)

)
∨
(
¬(α, β′ ` T) ∧ ¬α(e) ∧ β(e)

)
.

1: state?em∨eBrake?em/comm!off

2: state?em∨eBrake?em/comm!¬off

Error

Figure 4. Error Service Emergency

Any run of S is obviously a run of Ŝ. Also, any run
contained in 〈〈Ŝ〉〉 but not in 〈〈S〉〉 reaches a state α where
α(e) holds. We call such runs error runs. Once in an error
state, there is no transition leading back to a non-error one.

Interface Reduction: As already mentioned, properties
describe the behavior of the system as a whole. However,
single services are usually defined over subsets of the
variables referenced by a property. The property satisfaction
as defined in Eq. (3) takes this into account and projects
system runs to the common variable subset. In order to
reproduce this circumstance in our algorithmic analysis, we
introduce the interface reduction of a service S = (V, I, T)
by a variable set W as S|W

def= (V \W, I|W , T |W), where
for all α, β ∈ Λ(V \W) the following relations hold:

α ` I|W
def⇔ ∃γ ∈ Λ(V) : γ ` I ∧ α V \W= γ and

α, β′ ` T |W
def⇔ ∃γ, δ ∈ Λ(V) : γ, δ′ ` T ∧ α V \W= γ ∧ β V \W= δ.

The relation 〈〈S〉〉 V \W= 〈〈S|W 〉〉 between a service and its
reduction is obvious. The accomplishment of a reduction
is completely schematic. The constraints on variables from
W are replaced by true.

Reduction to Reachability Problem: We reduce the
safety property satisfaction to a reachability problem. A
property ϕ over Vϕ is satisfied by S = (V, I, T) if and
only if no error state is reachable in C

def= Ŝϕ|Vϕ\V ‖ S
by S. In other words, whenever S is enabled in C, C
never proceeds to an error state. Analogous to the projection
on common variables in Eq. (3), the property service is
reduced to constraints concerning S only using the interface
reduction. Formally, we define

S |= ϕ
def⇔ ∀α, β ∈ Reach(C) : α ` I ⇒ ¬α(e)

∧
(
EnS(α) ∧ β ∈ SuccC(α)

)
⇒
(
α(e)⇔ β(e)

)
. (4)

Obviously, Eq. (4) can be transformed into a reachability
problem by simply marking states to which C can transit
while S is enabled.

Proposition 1. For a service and a property Eq. (3) holds
if and only if Eq. (4) holds.

Proof Sketch: The proof follows from the observation
that given S and Sϕ over V and Vϕ, resp., then the set {α ∈
Reach(C) | ¬α(e)} is equal to the set {α |α ∈ Reach(S)∧
α ∈ Reach(Sϕ)} over the variable set V ∩ Vϕ.

off/eOff on/eOff

off/eOn

1: switch?¬on∧state?off∧eBrake?¬em/
status!off∧comm!ε∧emerg!off {p=0}

2: switch?¬on∧state?off/
status!off∧comm!ε {p=1}

3: state?¬em∧eBrake?¬em/
emerg!off {p=2}

Error

4: switch?on∧state?off∧eBrake?ε/
status!on∧comm!on {p=1∨p=0}

7: switch?on∧state?off∧eBrake?em/
status!on∧comm!on {p=1∨p=0}

6: state?em/
comm!off∧emerg!on {p=0}

5: state?em∨eBrake?em/
comm!off∧emerg!on {p=2}

2∧3 Konflikt

Figure 5. (Switch ‖S> EBrake) ‖ Emergency

IV. PRIORITIZATION ALGORITHM

For a pair of services and a property we provide an
algorithm which synthesizes a priority between the services
such that the prioritized service combination satisfies the
property. The synthesized priority can disable one of both
services in order to prevent the combination from violating
the property. Thereby, we are interested in finding the most
permissive prioritization. It should intervene only when the
un-prioritized combination would potentially lead to the
property violation. In this case, all possible non-violating
prioritizations are allowed. This idea and its extensions for
deadlock-free and modular prioritizations are formalized in
the rest of this section.

The complete prioritization process can be outlined as fol-
lows. The corresponding deterministic versions of services
S1 and S2 and the property service Sϕ are produced as
described in Sec. IV-C. Then, the complete search space
of all possible prioritizations is computed using the results
of Sec. IV-A. Finally, the algorithm from Sec. IV-B, or
its conflict-free modification from Sec. IV-D is applied to
produce one of the following results: (1) S1 ‖ S2 |= ϕ,
no prioritization is needed, (2) the priority service P is
computed, such that S1 ‖P S2 |= ϕ, or (3) S1 and S2

violate ϕ under any prioritization. The determinization and
search space computation can be accomplished iteratively
along with the actual priority synthesis. This increases the
efficiency of our method.

Complexity Considerations: Our synthesis procedure is
linear in the product of the sizes of S1, S2, and Sϕ. Thereby,
the services are assumed to be deterministic. Determination
presented in Sec. IV-C can cause an exponential blow-up
in the worst case. However, in the practice that worst case
rarely occurs for linear-time properties.

A. Search Space

Given two services S1, S2 and a property ϕ defined over
V1, V2, and Vϕ, resp. Our synthesis procedure starts with
following service combination C = (S1 ‖S> S2) ‖ Ŝϕ.2

2Due to space limitations, we consider the matching variable sets only,
i.e., we assume that Vϕ = V1∪V2. The procedure and proofs for the more
general case go analogous.

The service S> is defined as follows: S>
def= (I1 ∪ I2 ∪

Iϕ, I1∧I2∧Iϕ,True, p) and ∀α, β : p(α, β) = {0, 1, 2}. S>
permits any un- and prioritized behavior of the combination
– for any state pair (α, β) S1, S2 or none of them may
be prioritized. The service Ŝϕ ensures that β(e) holds
whenever the combination violates the property ϕ. This
service combination is the search space of our synthesis
algorithm.

For C and its state α we write Succi(α) with Succi(α) ⊆
Succ(α) and i ∈ {0, 1, 2} to denote sets of all successor
states β for which i ∈ p(α, β) holds. We call β an i-
successor of α.

Fig. 5 shows a fragment of the combination automaton
(Switch‖S>EBrake)‖Emergency. Thereby, we only
sketch the transitions going from the combined state
off/eOff. According to the definition in Sec. III-C, the
combination of Transitions 1 and 2 in Fig. 1(b), 1, 2 and
3 in Fig. 2(b), and both transitions in Fig. 4 yields 7
transitions displayed in Fig. 5. This combination allows for
the unprioritized behavior (p = 0) as well as prioritization
of service Switch (p = 1) or service EBrake (p = 2).
Transition 7 obviously violates the Emergency property
(Fig. 4) and because of Transition 2 in Fig. 4 it goes to the
state Error.

Algorithm 1 Priority Construction Algorithm
Ensure: prio(A,Vis,Err) = (Pri ,Visn,Errn)

1: Pri ← ∅, Errn ← Err , Visn ← Vis
2: for all α ∈ A \ (Visn ∪ Errn) do
3: Visn ← Visn ∪ {α}
4: (P0,Visn,Errn)← prio(Succ0(α),Visn,Errn)
5: if Succ0(α) ∩ Errn = ∅ then
6: Pri ← Pri ∪

{
(α, β, 0) | β ∈ Succ0(α)

}
∪ P0

7: else // prioritization needed
8: (P1,V1,E1)← prio(Succ1(α),Visn,Errn)
9: (P2,V2,E2)← prio(Succ2(α),Visn,Errn)

10: Errn ← E1 ∪ E2, Visn ← V1 ∪V2

11: if ∀i ∈ {1, 2} : Succi(α) ∩ Errn 6= ∅ then // an
error is inevitable

12: return (Pri ,Visn,Errn ∪A)
13: end if
14: for all i ∈ {1, 2} do
15: if Succi(α) ∩ Errn = ∅ then
16: Pri ← Pri ∪ {(α, β, i) | β ∈ Succi(α)} ∪ Pi
17: end if
18: end for
19: end if
20: end for
21: return (Pri ,Visn,Errn)

B. Priority Service Synthesis
Our algorithm pursues the following strategy. By means

of appropriately chosen prioritization we try to prevent

combination services from reaching an error state. The
algorithm favors the unprioritized combination – if it has
a choice between the unprioritized behavior (p = 0) and
the prioritized one (p ∈ {1, 2}), it prefers the former.
This directly reflects the main idea behind the service-
based specification that each service extends the system
behavior, i.e., a service should be enabled when possible.
If in the state α every prioritization leads to an error state,
we propagate the error to α. If the error is propagated to
the initial state, the property ϕ is not satisfiable by the
given service combination under any prioritization. If the
synthesized priority never prioritizes a service (i.e., for each
transition p = 0), the system always satisfies the property
and the priority can be omitted.

The idea sketched above is realized by Alg. 1, which
computes a set of priorities Pri and a set of (propagated)
error states Err for an initial state set A of a combined
service C. Thereby, a priority is of the form (α, β, i), which
means that in the step (α, β) prioritization i ∈ {0, 1, 2}
is valid. Vis marks the visited states. Note, in the rest
of this section, we assume C to be deterministic, i.e., for
each state α and each prioritization i ∈ {0, 1, 2} there is at
most one successor state: ∀β1, β2 ∈ Succi(α) : β1

L∪O= β2.
Determinism is achieved by the method from Sec. IV-C.

Given a set of states, the algorithm performs a depth-
first search on C. For each unvisited and not erroneous
state α ∈ A (Line 2 in the algorithm), the prioritization
of its unprioritized successors Succ0 is recursively computed
(Line 4). If all 0-successors do not lead to error states, no pri-
oritization is required – for each β ∈ Succ0(α) the function
p(α, β) is set to 0 (Line 6). Otherwise, the prioritizations
of 1- and 2-successors are recursively computed (Lines 8
and 9). If in both prioritized successors an error state is
reachable (Line 11), an error is inevitable – no prioritization
can prevent the system from reaching an error state. In this
case the error is propagated backwards to all states from
A (Line 12). Otherwise, the appropriate prioritization is
synthesized (Line 16).

Given a service combination C = (S1 ‖S> S2) ‖ Ŝϕ, the
set of prioritizations is computed by the following function:

(Pri , .,Err) = prio({α ` IC}, ∅, {α ∈ Λ(VC) | α(e)}),

where prio is defined by Alg. 1, {α ` IC} is the set of
initial states, and {α ∈ Λ(VC) | α(e)} is the set of (initial)
error states. The synthesized set Pri is then converted to the
property-preserving priority service P def= (I1∪I2∪Iϕ∪L1∪
L2∪Lϕ, IC , TP , p) as introduced in Sec. III-C. TP is defined
by the successor function: Succ(α) def= {β | ∃(α, β, i) ∈
Pri}. The function p is defined as follows: p(α, β) def= {i |
(α, β, i) ∈ Pri}.

In our running example, the algorithm processes the au-
tomaton in Fig. 5 and yields the automaton partially depicted
in Fig. 6. As already mentioned, both figures depict the tran-
sitions going from the state off/eOff only. Transitions 2

off/eOff on/eOff

off/eOn

1: switch?¬on∧state?off
∧eBrake?¬em {p=0}

2: switch?on∧state?off∧eBrake?ε {p=0}

3: state?em {p=2}

4: eBrake?em {p=2}

Figure 6. Prioritization Service

and 3 in Fig. 5 are eliminated because the reaction to the
same inputs is specified by unprioritized Transition 1 – this
results in Transition 1 in Fig. 6. Transition 4 may prioritize
service Switch or none (p = 1 ∨ p = 0) – the algorithm
keeps the unprioritized behavior only (Transition 2). Tran-
sition 7 is eliminated because it reaches the error state and
the reaction to the same inputs is specified by Transitions 5
and 6 – this results in Transitions 3 and 4. Fig. 3(b) shows
the complete priority service, which ensures satisfaction of
the property depicted in Fig. 4 by services Switch and
EBrake. For a better visual presentation all local states are
merged to a single one since they have the same reaction to
the same inputs. The same is done for equivalent transitions.
This priority service is already explained in Sec. III-C.

Next, we prove the correctness of the presented method.
By Prop. 2 we prove invariants (5) and (6) of Alg. 1 needed
to show the correctness of our method (Prop. 3). We use
the following notation: Reach(C ,A) denotes the set of all
states reachable in C starting from some state subset A.

Proposition 2 (Algorithm Correctness). Given a determin-
istic service C with transitions marked by 0, 1, 2 and
error states EC . Alg. 1 called as (Prin,Visn,Errn) =
prio(A,Vis,Err) is correct if the following assertions hold.
(a) ∀α1, α2 ∈ A : α1

L∪O= α2 and (b) ∀α ∈ Err :
Reach(C, {α}) ∩ EC 6= ∅.

Proof Sketch: We show that Alg. 1 terminates with a
correct result.
Termination The algorithm performs a depth-first search.
Visited or erroneous states are not processed. Thus, the
function prio always terminates for services over variables
with finite domains.
Partial Correctness The following post-conditions hold after
the termination of the algorithm. For all α ∈ A

α ∈ Errn ⇔ ∀p ∈ {0, 1, 2} :
Reach(C, Succp(α)) ∩ EC 6= ∅ (5)

(α, β, p) ∈ Prin ⇔ p ∈ {0, 1, 2}
∧ α, β /∈ Errn ∧ β ∈ Succp(α)

∧ p 6= 0⇒ Reach(C,Succ0(α)) ∩ EC 6= ∅ (6)

Eqs. (5) and (6) can be shown by structural induction.

Proposition 3 (Synthesis Correctness). Given S1, S2, ϕ,
and a priority service P synthesized by Alg. 1, the following
assertions hold. (a) S1 ‖P S2 |= ϕ and (b) P is the weakest
property-preserving property, i.e., for any other priority R,

which respects the prioritization order “0 before 1, 2”, the
following assertion holds: if S1 ‖R S2 |= ϕ then 〈〈S1 ‖R

S2〉〉 ⊆ 〈〈S1 ‖P S2〉〉.
Proof: (a) According to Prop. 1 we need to show that

Eq. (4) holds for D = (S1 ‖P S2) ‖ Ŝϕ. We observe that
since 〈〈P 〉〉 ⊆ 〈〈S>〉〉, 〈〈D〉〉 ⊆ 〈〈(S1 ‖S> S2) ‖ Ŝϕ〉〉 and,
thus, Eq. (6) from Prop. 2 also holds for D. From Eq. (6)
follows that 〈〈D〉〉 contains only runs in which S1 ‖P S2

does not reach an error state.
(b) S> is the super-set of all possible priority services,

thus, 〈〈R〉〉 ⊆ 〈〈S>〉〉 and also 〈〈S1‖RS2〉〉 ⊆ 〈〈S1‖S>S2〉〉 for
any R. Assume there is some R, which violates our second
proof goal. Then, there must exist a run 〈α1 . . . 〉 ∈ 〈〈S1 ‖R

S2〉〉 \ 〈〈S1 ‖P S2〉〉, which satisfies ϕ, and there must exist a
valuation αi in this run, such that αi is reachable by S1‖PS2

but αi+1 /∈ SuccS1‖PS2
(αi) . If αi+1 was visited by Alg. 1, it

must belong to the error set. Then, according to Eq. (5) there
exists an input sequence starting at αi+1 which inevitably
reaches an error state and we obtain a contradiction.

If αi+1 was not visited by Alg. 1, then according to (6)
the priority of (αi, αi+1) is > 0 and S1 ‖P S2 has a
transition starting from αi with priority 0, i.e., either R
disrespects the prioritization order or αi+1 is not reachable
in S1 ‖R S2 either.

C. Determinization

Priorities control combined services based on the system
inputs only. They reference neither outputs nor local vari-
ables of both services. Thus, every output or internal non-
determinism is a behavior not controllable by the priority.
These kinds of non-determinism must be eliminated. We
replace every successor set containing more than one val-
uation without respect to inputs by exactly one successor.
The powerset construction [12] is applied therefore. For
a given service S = (I ∪ L ∪ O, I, T), a corresponding
deterministic service SD = (VD, ID, TD) is built as follows.
VD

def= I]{lD} with ty(lD) def= P(Λ(L∪O)). The only local
variable lD contains sets of local and output valuations of
the original service. We define subval to be a set, which
contains all states γ ∈ Λ(V) building one deterministic state
α ∈ Λ(VD):

γ ∈ subval(α) def⇔ γ
I= α ∧ {γ}

L∪O
⊆ α(lD).

Thus, subval associates every state of SD with the set of
corresponding states of S. The successor state of α ∈ Λ(VD)
is computed by applying the successor function of S on each
state from subval(α). Formally, for all α, β ∈ Λ(VD) we
define

α ` ID
def⇔ ∀γ ∈ subval(α) : γ ` I,

α, β′ ` TD
def⇔ subval(β) = {δ | γ ∈ subval(α) ∧ γ, δ′ ` T }.

The described procedure does not preserve the language of
S. SD simulates S but not vice versa. However, 〈〈SD〉〉
describes exactly the set of behaviors, which can be dis-
tinguished by our priority services since they are aware
of inputs only. The same procedure can be applied for
the reduction of internal non-determinism only if we re-
define VD

def= I] {lD}] O, ty(lD) def= P(Λ(L)), and

γ ∈ subval(α) def⇔ γ
I∪O= α ∧ {γ}

L

⊆ α(lD).

D. Deadlock-free Combination

The construction presented so far produces the priority
service P which guarantees the fulfillment of a given prop-
erty ϕ by a system S1 ‖P S2. However, in order to satisfy ϕ
P may lead S1 ‖P S2 into a deadlock. Since deadlocks are
undesired for reactive systems, we adapt our procedure for
the synthesis of deadlock-avoiding priority services.

Not all deadlocks can be detected in the search space
(S1 ‖S> S2) ‖ Ŝϕ because during the determinization dead-
locks may potentially be eliminated3 and, consequently,
become not observable during the priority synthesis. Thus,
we search for deadlocks in the non-deterministic service
combination and add them to the initial error set Err . A
deadlock is a reachable local state without successor states:
∧β∈loc(α)Succ(β) = ∅ with loc(α) def= {β ∈ Λ(V) | β L= α}.
The initial error set is then defined as follows

Err def= {α | α(e)}
∪ {α | ∃β ∈ subval(α) : ∀γ ∈ loc(β) : Succ(γ) = ∅}.

Note, the computation of this set is not required in advance.
The condition our algorithm relies on – whether some α
belongs to Err – can be checked individually for every α
along with priority computation.

E. Modular Prioritization

Modularity is an important issue since it allows to keep
the problems manageable and to ensure scalability of the
approach. In this section we deal with the satisfaction of a
set of several properties. If a combination of two services
S1 and S2 has to satisfy properties ϕ, ψ, . . . , we can build
priority services for every single one and combine them to
a priority which ensures the satisfaction of the conjunction
ϕ ∧ ψ ∧ . . .

The combination of combinable input-complete priority
services P1 = (V1, I1, T1, p1), P2 = (V2, I2, T2, p2) yields
the priority service P = P1 ‖ P2

def= (V, I, T , p). The first
three components of P ’s tuple are defined as defined for
regular services in Sec. III-B. The priority function p is de-
fined for all α, β ∈ Λ(V) as p(α, β) def⇔ p1(α, β)∩p2(α, β).
P1 and P2 have no outputs, thus, P is input-complete also.
However, only coinciding prioritization decisions of P1 and
P2 are included into p. When p1 and p2 prioritize opposite

3Think of two states – a deadlock and a non-deadlock one – which are
combined to one state during the powerset construction.

Figure 7. Services in AutoFOCUS

services in some state α, the behavior of a prioritized
combination S1 ‖P S2 becomes undefined according to the
definition in Sec. III-C. In other words, the system cannot
react to α. The following proposition shows that the above
definition of priority combination is property preserving.

Proposition 4. Given a pair of combinable services S1, S2,
a pair of properties ϕ, ψ, and a pair of priority services Pϕ,
Pψ , such that holds S1 ‖Pϕ S2 |= ϕ and S1 ‖Pψ S2 |= ψ.
Then, S1 ‖Pϕ‖Pψ S2 |= ϕ ∧ ψ holds, too.

Proof Sketch: We define Sϕ,ψ = (Vϕ,ψ, Iϕ,ψ, Tϕ,ψ), the
characterizing service of ϕ∧ψ, as Vϕ,ψ

def= Vϕ∪Vψ , Iϕ,ψ
def=

Iϕ∧Iψ , Tϕ,ψ
def= Tϕ∧Tψ . Sϕ,ψ characterizes exactly all the

runs which satisfy both properties: 〈〈Sϕ,ψ〉〉 = 〈〈Sϕ〉〉∩〈〈Sψ〉〉.
We define C

def= (VC , IC , TC) def= S1 ‖Pϕ‖Pψ S2, then we

must show that 〈〈C〉〉
Vϕ,ψ∩VC
⊆ 〈〈Sϕ,ψ〉〉 or, equally. due to

Prop. 1 that Eq. (4) holds for C and Sϕ,ψ . The conjunction
of Prop. 1 for ϕ and ψ yields the desired property.

V. TOOL SUPPORT AND EVALUATION

We have integrated the service-based approach from
Sec. III into an existing CASE tool. AutoFOCUS4 is a tool
for the component-based development of reactive systems.
It supports graphical description of the developed system
using different integrated diagram types.

We have extended this tool by a perspective dealing with
service-based specifications. This perspective offers three
views (cf. Fig. 7). In Project Explorer services are structured
hierarchically. In Service Structure Diagrams syntactical in-
terfaces are defined. State Transition Diagrams describe the

4http://af3.in.tum.de/

behavior of services using our I/O automata. In the adapted
simulation and verification environments of AutoFOCUS
service-based specifications can be validated and verified.

Our current work includes the implementation of Alg. 1
in the tool. Thereby, an existing NuSMV5 back-end of the
AutoFOCUS verification environment is applied for defini-
tion of the priority function p and error propagation.

The presented approach is currently evaluated in an in-
dustrial project with Siemens, Sector Industry. 40 different
scenarios of the control unit of the bottling plant informally
specified on over 50 pages have been formalized in Auto-
FOCUS by approximately 30 modular and concise services
(e.g., “filling bottles with items” or “singularizing bottles
on the conveyor belt”). Also, 11 safety-critical properties
involving the behavior of the whole system are identified
(e.g., “at most one bottle in the filling station”). The first
NuSMV models are manually created and priority services
are synthesized.

VI. CONCLUSION

We presented a mathematical framework to model
scenario-based specifications of multifunctional reactive sys-
tems. In our approach, the system functionality is specified
as a set of partial scenarios (services), which specify the
overall system behavior from different viewpoints. The
combination of these scenarios according to their priorities
yields the overall system specification. We presented a novel
synthesis method for the prioritization w.r.t. safety properties
involving more than one scenario. Our synthesis algorithms
automatically yield a set of priorities between scenarios
such that their combined behavior fulfills all properties and
remains conflict-free.

The proposed approach can be set in a broader context
of model-based development. Thereby, we aim at a formal
model-based development based on the same notion of func-
tion. With scenario-based specifications as an input, these
specifications can be checked for consistency by verification
and simulation [10], [13]. Subsequently, the specification
is transformed into a component-based architecture [14].
Finally, the components are deployed onto a network of
electronic control units [15].

We are currently working on the implementation of the
presented approach in the CASE tool AutoFOCUS. A further
promising research direction is the combination of our syn-
thesis procedure with compositional verification techniques,
which would allow the independent synthesis of distributed
priority services.

Acknowledgments: We are grateful to Judith Thyssen,
Leonid Kof, Christian Leuxner, and Philipp Neubeck for
their advice on early versions of the paper.

5http://nusmv.irst.itc.it/

REFERENCES

[1] M. Broy, “Service-oriented systems engineering,” in Eng. Th.
of SW Intensive Systems. Springer, 2005.

[2] P. J. G. Ramadge and W. M. Wonham, “The control of
discrete event systems,” Proceedings of the IEEE, vol. 77,
no. 1, pp. 81–98, Jan. 1989.

[3] D. D’Souza and M. Gopinathan, “Conflict-tolerant features,”
in CAV ’08, 2008, pp. 227–239.

[4] K. Altisen, G. Gößler, and J. Sifakis, “A methodology for the
construction of scheduled systems,” in FTRTFT ’00. London,
UK: Springer, 2000, pp. 106–120.

[5] S. Uchitel, G. Brunet, and M. Chechik, “Synthesis of par-
tial behaviour models from properties and scenarios,” T-SE,
vol. 99, no. 1, 2009.

[6] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik, “A
relationship-driven framework for model merging,” in MISE
’07. IEEE, 2007.

[7] C. Damas, B. Lambeau, and A. van Lamsweerde, “Scenarios,
goals, and state machines: a win-win partnership for model
synthesis,” in FSE’14. ACM, 2006.

[8] R. Alur, K. Etessami, and M. Yannakakis, “Inference of
message sequence charts,” IEEE Trans. Softw. Eng., vol. 29,
no. 7, 2003.

[9] N. A. Lynch and M. R. Tuttle, “An introduction to i/o
automata,” CWI-Quarterly, vol. 2, no. 3, pp. 219–246, 1989.

[10] J. Botaschanjan, A. Harhurin, and L. Kof, “Service-based
Specification of Reactive Systems,” TU München, Technical
Report TUM-I0815, 2008.

[11] M. Y. Vardi and P. Wolper, “An automata-theoretic approach
to automatic program verification,” in LICS’86. IEEE, 1986.

[12] J. E. Hopcroft and J. D. Ullman, Introduction to Automata
Theory. Addison-Wesley, 1979.

[13] A. Harhurin and J. Hartmann, “Towards consistent specifica-
tions of product families,” in FM’08, ser. LNCS, vol. 5014.
Springer, 2008.

[14] J. Botaschanjan and A. Harhurin, “Integrating Functional and
Architectural Views of Reactive Systems,” in CBSE’09, ser.
LNCS, vol. 5582. Springer, 2009.

[15] J. Botaschanjan, A. Gruler, A. Harhurin, L. Kof,
M. Spichkova, and D. Trachtenherz, “Towards Modularized
Verification of Distributed Time-Triggered Systems,” in
FM’06. Springer, 2006.

