FAKULTAT FUR INFORMATIK

Software & Systems Engineering

TECHNISCHE UNIVERSITAT MUNCHEN H
Prof. Dr. Dr. h.c. Manfred Broy

SPES 2020 Deliverable D1.2.B-6

SPES Metamodel

‘ =
-

S/ SPES

Software Plattform Embedded Systems 2020

Author: Alexander Harhurin
Florian Holzl
Thomas Kofler

Version: 1.0

Date: December 15, 2010

Status: Released

Technische Universitat Miinchen - Fakultat fur Informatik - Boltzmannstr. 3 - 85748 Garching

Contents

1 Introduction
1.1 Two dimensions of abstraction
1.2 Glossary . . . o o v i o e

2 Functional Perspective
3 Logical Perspective
4 Technical Perspective

References

1 Introduction

1.1 Two dimensions of abstraction

Functional Logical Persoective Ted‘"icf"' Geometrical
Perspective g P Perspective Perspective

| | I e R — 4§
tresysem O O et

e coarser
' N - [| B -
. N .| Cockpit HW Tail HW . 0 A)
Supersystems : - j[System] [System] : 4 I | :\ <
: : : gl T o
r A e ey e T T : o
Systems : C/ \O : 9 E O : : o
: : T : Q
: : : : 3
""" : <
:)
Subsystems : =
. <
e :
O O Q Z
: :
__ gg r___?__‘ finer

Basic Blocks /\,é) N g i_ ' ,),‘ © o size20xsxs0 - Y
: . .) * Rel. Position: (1,1,2) -

Software Development Perspectives

Figure 1: Two dimensions of abstraction: granularity levels and development perspec-
tives [TRS"10]

1.2 Glossary

Levels of granularity: A system is composed of sub-systems which are at a lower granularity
level and which can themselves be regarded as systems. Each sub-system can be considered
as a system itself and can be further decomposed until we reach basic building blocks (cf.
Figure 1).

Software development perspectives: A system can be regarded from different perspectives,
each perspective representing different kinds of information about the system (cf. Fig-
ure 1).

Function

I
1 |Syntacticlnterface |

FunctionalView

|AtomicFunction| |CombinedFunction| ﬂ K
1 T T 1

1% | InputPort || OutputPort |

*
E>|
| Specification | | Dependency I—

Figure 2: Functional Perspective

2 Functional Perspective

Functional View (or Perspective): The functional perspective (cf. Figure 2) describes the us-
age functionality that a system offers its environment /users (cf. [BFG 08, TRS 10, BH09,
Harl10]). The central aims of the functional perspective are: Hierarchical structuring of
the functionality from the point of view of the system’s users; Definition of the boundary
between the system functionality and its environment: definition of the syntactical inter-
face and abstract information flow between the system and its environment; Consolidation
of the functional requirements by formally specifying the requirements on the system be-
havior from the black-box perspective; Understanding of the functional interrelationships
and mastering of feature interaction.

Function: The functional view consists of several functions. A function is a syntactical and/or
semantical projection of the overall system functionality. A function is defined as a map-
ping from a subset of inputs to a subset of outputs. A function has a syntactical interface
and may be atomic or combined.

Atomic Function: An atomic function is given by one or more behavior specifications.

Combined Function: A combined function consists of two or more functions. Combined func-
tions are used to build a functions hierarchy.

Specification: A specification defines the behavior of a function and may be given by an I/O
automaton (cf. [BH09, Harl10]), an I/O table (cf. [THO09]), ...

Dependency: By dependency relations, we mean relations between functions in a way that the
operation of one function depends on those of other functions. There are a lot of method-
ological significant dependency relations like enables, modifies or priority. Dependencies
may be given e.g., by an I/O automaton (cf. [BH09, Harl0]) or implemented by external
modes (cf. [Bro07]).

Syntactic Interface: A function has a syntactic interface consisting of input and output ports.

Port: A port is an interaction point between the system and its environment.

Type: Each port has a data type, e.g., boolean or integer. Note, that more sophisticated type

systems, e.g., including physical units (m, s2, ...) are thinkable.

Input Port: The system receives messages from its environment through its input ports.

Output Port: The system sends messages into its environment through its output ports.

3 Logical Perspective

LogicalView h Component ‘1 1 |Syntacticinterface
*
2. 1
1
AtomicComponent CompositeComponent *
17 1? : Port — Type
1.* * {
Specification Channel f
InputPort OutputPort

Figure 3: Logical Perspective

Logical View (or Perspective): The logical perspective (cf. Figure 3) describes the application
of the system by a network of communicating and cooperating components (cf. [BS01]).
The central aims of the logical perspective are:

Hierarchical structuring of the application by means of components.

Definition of the syntactical interfaces and information flow between the system and
its environment (input and output communication) and between the different sub-
systems (local communication).

Implementation of the system functionality and its interaction with the environment
by means of behavior specifications.

Component: The logical view consists of a set of components. A component is a syntactical
and semantical projection of the overall system with the outermost component giving
the interface between the system and its environment. A component is mathematically
defined as a mapping from the valuations of input stream histories to the valuations of the
output stream histories (cf. [BS01]). A component has a syntactical interface and may be
atomic or combined.

Atomic Component: An atomic component is given by one or more (alternative) behavior
specifications describing the input/output behavior of that component.

Composite Component: A composite component consists of a network of two or more com-
ponents (each being atomic or, again, a composite). Composite components are used to
structure the system architecture into smaller units and connecting them with commu-
nication links (called channels). The behavior of the composite component is defined by
the parallel composition of the behaviors of the sub-components (cf. [BSO01]).

Specification: A specification defines the behavior of a component and may be given by an I/O
automaton or an I/O table or even more specific descriptions like filters or PID controllers.

Syntactic Interface: A component has a syntactic interface consisting of input and output
ports.

Port: A port is an interaction point between the system and its environment. Note, that in
contrast to the functional perspective any port has at most one source of information, i.e.,
atomic output ports receive the data to be sent from the atomic behavior, while composite
output ports are connected to at most one atomic output port via a channel. Analogously,
atomic input ports receive their data from a composite input port or an atomic output
port, respectively.

Type: Each port has a data type, e.g., boolean or integer. Note, that more sophisticated type
systems, e.g., including physical units (m, s2, ...) are thinkable.

4 Technical Perspective

Technical View (or Perspective): The technical perspective describes the hardware or virtual
machine platform the system is to be executed on. Figure 4 shows the generic hardware
meta-model (in black) and two levels of domain-specific extensions thereof (in red). Due
to the plethora of available hardware and VM solutions the SPES technical meta-model
is intended to be extended for a given application domain or even for a given kind of
application (e.g. engine control, in-flight entertainment, virtual power plant network).

The central aims of the technical perspective are:

Hierarchical structuring of the processing and communication units to be used as
execution platform.

Specific description of specialized peripheral components (like sensors and actuators).
Specific description of communication networks.

Computing Unit: A computing unit provides the application with processing power allowing
algorithms and control programs to be executed. Each computing unit contains various
types of ports to access its environment. Furthermore, each computing unit may have an
internal structure decomposing it into smaller computing and transmission units, e.g., a
set of electronic control units in a car are connected via a CAN field bus, while some of
the ECUs can be decomposed into specific behavioral elements connected via a network
on the chip.

Transmission Unit: A transmission unit connects multiple computing units via transceiver
ports.

1

L J

TechnicalView

@ — ComputingUnit

R)

+ports

1

Port

/ﬂ

*

]

=

Type

TransmissionUnit

K

Transmitter

Receiver

AR B

Transceiver

N

/]

1

AN

T

A
+transceivers

1

Actuator Controller Sensor ECU BUS
Servo CANController Poti MPCBoard CANBUS

Figure 4:

Technical Perspective

Port: A port is a generalization of of hardware units or virtual machine parts that connect
computing units with their environment and allows data exchange.

Type: Ports are usually typed with low-level types like integer or boolean or with high-level
types like bus protocols or more complex data structures.

Transmitter: A computing unit can provide information to its environment via transmitter
ports. With respect to the logical perspective the output ports of logical components
are mapped to transmitter ports, e.g., some integer value is transmitted to servo-motor
resulting in a position change of the driver window.

Receiver: A computing unit can gather information from its environment via receiver ports.
With respect to the logical perspective the input ports of logical components are mapped
to receiver ports, e.g., the analog signal of a potentiometer is converted to a digital value
and provided to the application as an integer value.

Transceiver: A transceiver allows the computing unit to send and receive information. Transceiver
ports are connected to some transmission unit. They usually represent network driver
software provided by the operating system or the virtual machine of the computing unit.

References

[BFG108] Manfred Broy, Martin Feilkas, Johannes Griinbauer, Alexander Gruler, Alexan-

[BH09)]

[Bro07]

[BSO1]
[Har10]

[THO9]

[TRS*10]

der Harhurin, Judith Hartmann, Birgit Penzenstadler, Bernhard Schétz, and Doris
Wild. Umfassendes architekturmodell fiir das engineering eingebetteter software-
intensiver systeme. Technical Report TUM-10816, Technische Universitat Miinchen,
june 2008.

Jewgenij Botaschanjan and Alexander Harhurin. Integrating Functional and Ar-
chitectural Views of Reactive Systems. In Proceedings of CBSE’09, volume 5582 of
LNCS. Springer, 2009.

Manfred Broy. A theory for requirements specification and architecture design
of multi-functional software systems. Mathematical Frameworks for Component
Software: Models for Analysis and Synthesis, pages 119154, 2007.

Manfred Broy and Ketil Stglen. Specification and Development of Interactive Sys-
tems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

Alexander Harhurin. Von separaten Interaktionsmustern zu konsistenten Spezifika-
tionen reaktiver Systeme. PhD thesis, Technische Universitdt Miinchen, 2010.

Judith Thyssen and Benjamin Hummel. Behavioral Specification of Reactive Sys-
tems Using Stream-Based 1/O Tables. In 7th IEEE International Conference
on Software Engineering and Formal Methods (SEFM). IEEE Computer Society,
November 2009.

Judith Thyssen, Daniel Ratiu, Wolfgang Schwitzer, Alexander Harhurin, Martin
Feilkas, and Eike Thaden. A system for seamless abstraction layers for model-based
development of embedded software. In Proceedings of Envision 2020 Workshop,
2010.

	Introduction
	Two dimensions of abstraction
	Glossary

	Functional Perspective
	Logical Perspective
	Technical Perspective
	References

