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About the Document

In the development of software and hardware systems it is important to guarantee a correct
behaviour. Damages due to errors may cost money and even endanger human lives. There
are analysis techniques to verify, test and validate systems. In this document we explain
the different approaches which—altogether—can be referred to as analysis techniques. The
state-of-the-art of both, research and industry, will be stated for testing and verification.

The purpose of this document is give an overview and introduction to existing analysis tech-
niques. It is one of the objective of work package ZP-AP 1.3, to integrate such techniques into
the modelling theory.
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1 Analysis Techniques

During the last years, the functionality of safety-critical systems grew dramatically. This in-
cludes software as well as hardware, and holds in the same time for reliability requirements.
Therefore, we are now facing an enormous system complexity. Likewise to the growing com-
plexity, the possibility of unintentional added defects grows as well. In consequence, system
failures may lead to a considerable loss of money due to warranty costs or even—in the worst
case—endanger human lives. Thus, the need for well-defined development theories, languages,
and tools naturally follows. Their comprehensive use permits the construction of more reliable
systems even though system complexity will in all likelihood continue to grow in the future.

Introduction Nowadays, computers are widespread and used to control various safety critical
systems like automobiles, aircrafts, satellites, medical devices, etc. Software and hardware
operating within such systems is complex, it consists of many modules or programs, each in
the magnitude of thousands to millions lines of code. The existence of errors may have severe
consequences. For instance, consider the famous fault occurred in 1994: the “Pentium bug”,
which caused Intel to recall faulty chips and take a loss of about $475 million [CMMP95].
In June 1996 another important program failure was in the Ariane 5 rocket: a computation
exception occurred during the conversion of a 64-bit floating point number into a 16-bit value.
The rocket exploded, less than forty seconds after its launch. The reason for this catastrophe
was identified to be a software failure in a system responsible for calculating the rocket’s
horizontal velocity. Since these exemplary events, software and hardware analysis techniques
have been more used, mostly model checkers but also theorem provers [ASM+08, BJ97].

In fact these examples (and many others) underline the need for developing reliable and sound
systems. We have also to consider that through the use of analysis techniques, we have a more
efficient specification and so verification of the undesired behaviours. Therefore it is possible
to reduce the time of the whole development process. In the sequel, we use the term system
to refer to a software or hardware system.

Definition In order to have a characterisation of the term analysis techniques, we refer to the
definition of Software Verification and Validation from the IEEE [cit05]:

“Software verification and validation (V&V) is a technical discipline of systems engineering.
The purpose of software V&V is to help the development organization build quality into the
software during the software life cycle. V&V processes provide an objective assessment of soft-
ware products and processes throughout the software life cycle. This assessment demonstrates
whether the software requirements and system requirements (i.e., those allocated to software)
are correct, complete, accurate, consistent, and testable. The software V&V processes deter-
mine whether the development products of a given activity conform to the requirements of that
activity and whether the software satisfies its intended use and user needs. The determination
includes assessment, analysis, evaluation, review, inspection, and testing of software products
and processes. Software V&V is performed in parallel with software development, not at the
conclusion of the development effort.”

That definition is applicable to software systems only. Next we state an analogous one for hard-
ware verification [KG99]. The desired functionality and the overall architecture of hardware

4



design is typically defined with a high-level specification, as for instance block diagrams, tables,
requirements, and informal text. In order to obtain a final design, a combination of top-down
and bottom-up design techniques are applied. The specification is checked in validation and
verification activities to verify that it does indeed meet physical and implemented design. This
is achieved, in the normal development flow, through simulation and testing. Typically exhaus-
tive testing for non-trivial systems is infeasible, so is model checking for large-scale systems,
whereas formal verification provides a more comfortable and systematic solution. Because,
formal verification, unlike testing and simulation, uses rigorous mathematical theories to show
that a system meets its specification. Anyway, there are also some support tools for exhaus-
tive testing sessions, through test case generation, which use in the verification process formal
verification techniques [HSTV08, HSTV09]. Based on these definitions we consider domains
and the purposes of each analysis technique.

Outline We give an overview of the major verification methods that are being used in industry
and their actual state in research. In Section 2 we describe traditional testing and simulation
approaches, inspections, reviews and walkthroughs in Section 3, and finally runtime verification
in Section 4. Then, in Section 5 we explain the basic ideas of formal verification techniques.
Section 6 sums up some successful case studies and well-known tools representing the state-
of-the-art and finally in Section 7 we present the results of a survey carried out in the SPES
project [HM09]. Notice, only those aspects related to analysis techniques are mentioned. In
Section 8 a comparison among different types of analysis techniques is given and we conclude
in Section 9.

2 Testing and Simulation

In order to introduce the typical use of testing and simulation, just consider a common devel-
opment life cycle.

Development life cycle We show a typical system development life cycle in Figure 1 [Mee05].
Requirements analysis is the first step, and describes the major characteristics and system prop-
erties to be developed. The second phase is the design, which is focused on the development
of a high-level architecture, which then is refined to a more detailed one describing system
components. This phase is followed by coding that typically includes also testing activities of
the individual modules or parts of the systems under development. Subsequent to the coding
phase, system testing is applied intensively. Finally, the product will be released and main-
tained if all test have been passed successfully. During the development and also afterwards,
in each of these phases it is possible to introduce errors or not correct behaviours that influ-
ence the correctness of the whole system. Testing and simulation are used to check that the
system is correct with respect to its functionality and requirements. As exhaustive testing
is in general infeasible, testing cannot show the absence of errors. Therefore, one relies on a
carefully selected or generated test suite in the hope that it covers most interesting program
executions.
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Figure 1: The development life cycle

Nowadays, testing, simulation, and code review methods are available for software written in
almost all programming languages. In practice these techniques detect a high number of coding
bugs and thus are considered very effective.

During the last years, Software Productivity Research1 built up an extensive database by
collecting software defects and the efficiency of their corresponding defect removal techniques
[Jon97]. Considering these results, only a few defects in the final product were identified to be
bugs inserted while coding, they are 35%.

For example, during testing of the Voyager and Galileo spacecraft systems, out of 197 detected
critical faults, only 3 were coding errors [Lut93]. Returning to the software productivity
research results, about 20% of the faults were traced back to requirements, 30% to design and
the rest to other types of errors. Hence, the majority of all errors made during the overall
software development process arise during the requirements and the design phase whereas less
during coding.

Typically, it is not possible to cover all possible system behaviours using testing and simulation
techniques. That is one of the most prominent drawbacks of these approaches. All possible
system behaviours can be characterised as the evolution of internal data or variable values
during the execution of a program stimulated with all possible input values. Hence, data and
variable values together define a well-defined system state. All those reachable states together
define the system’s state space.

Considering such state definition, even small programs have a large number of states, directly
dependent to the possible values that variables or data can have. For instance, a program
which has a variable in the natural set N, which is usually represented in the program with an
integer variable, it can take as many values as allowed by the memory available, and for each
value representing a different state.

1http://www.spr.com/
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Without considering the obvious memory limitations, the program can be considered to have
infinitely many states. Since testing and simulation are applied by explicit definition of val-
ues to variables, it is impossible or very tedious to examine all possible program behaviours.
Therefore, it might be the case that critical behaviours are not considered during testing and
possible defects are not detected.

3 Inspections, Reviews, and Walkthroughs

Below, we refer to the following definition: “software inspections, reviews, and walkthroughs
are human based methods for analysing documents based on informal or semi-formal techniques
for the purpose of early and effective defect detection during development in order to improve
product quality and reduce development rework” [CLB03].

In order to have a comprehensive overview, we consider the survey from the International Soft-
ware Engineering Research Network2 and the Fraunhofer Institute for Experimental Software
Engineering (IESE) initiated in 2002, and its evaluations for the state of software review prac-
tice [RCJ+08]. The results obtained evidence some important benefits from the use of software
reviews: improved communication among developers, evaluation of project status, and enforc-
ing standards. We conclude that many companies do not exploit the full potential of these
methods for reducing defects and so improve the quality control process. This conclusion is
due to the following considerations.

Firstly, software reviews are not systematically performed by companies during all develop-
ment phases, in fact about 40% of participants accomplish reviews on requirements or design
documents, and about 30% on source code.

Secondly, often the preparation or defect detection step is not systematically executed by
companies. Even though empirical studies have demonstrated that a preparation phase for
reviews is crucial for effective reviews [Vot93], about 60% of respondents stated that they did
not regularly manage it. Considering companies conducting a preparation phase, half of them
use a checklist as support, about 10% use more advanced reading techniques, and finally 40%
use reading technics, which do not offer systematic support for defect detection.

Thirdly, in a systematic evaluation and improvement program, companies seldom embed re-
views. In fact 40% of the companies do not collect data at all, and 18% collect data but do not
analyse them. Considering the 42% who collect and analyse data, only 23% try to optimise
the review process. Even though it has been proved that optimisation is crucial to accomplish-
ing effective reviews. Today, inspections, reviews, or walkthroughs are integral parts of most
industrial software development life-cycle models, procedures, and standards [RCJ+08].

4 Runtime Verification

Runtime verification [CM04] is a verification technique that combines formal verification (Sec-
tion 5) and program execution. The examination process for finding the defects is made by
passively observing the input/output behaviour during the normal program execution. The

2http://isern.iese.de
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system’s behaviour is monitored and so verified dynamically, by means of log traces, to satisfy
the requirements. Typically, requirements are specified as temporal constraints such as LTL-
formulas (Linear Temporal Logic), or automata and state charts. Different to model checking
techniques (Section 5.1.2), where a model of the target system is verified, runtime verification
is applied while the real system is in execution. Thus, runtime verification can determine how
the implementation conforms to its specification and permits a detection of a possible deviation
of the system behaviour from the pre-specified behaviour.

Formal verification methods (Section 5), as for instance model checking, also have to deal with
infinite trace, whereas runtime verification only considers finite traces. A runtime monitor
for detecting requirement violations that monitors on a potentially never ending system is an
exception to this rule.

In order to improve our confidence in the system, continuous monitoring of the runtime be-
haviour checks the consistence of the current execution with the requirements. To arguing for
runtime verification, the literature states at least the following four points [CM04]:

As the correctness of the model does not imply the correctness of the implementation (e.g.
errors in a code generator or compiler), one cannot be confident about the implementation.

Some system information is convenient to be checked or is available only at runtime.

Sometimes the behaviour depends on the environment of the target system. In fact, if an
environment model is not comfortable or possible to construct it is impossible to obtain
the information necessary to check the system.

It is helpful to monitor properties or behaviour that have been already statically tested,
in systems where safety and security are important or in critical systems.

Runtime verification permits formal specification (Section 5) and verification or testing (Sec-
tion 2) of the properties that a system has to satisfy, whereas traditional testing techniques
(such as unit testing or simulation) are mostly informal. In the latter case we have only a
partial proof of correctness, which does not guarantee that the system will operate correctly
with untested inputs. Runtime verification is weaker than formal methods but stronger than
testing, in terms of its ability to guarantee system correctness. In fact, at implementation
time, testing can guarantee the correctness only on a restricted set of inputs, as a consequence,
undetected faults may result in failures at runtime. Such events even allow the propagation of
corrupted output values because the failure was not detected. Contrariwise, when monitoring
the system at runtime, they can be caught. Nevertheless, formal methods are stronger than
runtime verification because such guarantees cannot be made a priori.

5 Formal Verification

Compared to (informal) testing, formal verification has the advantage of exhaustiveness, i.e.,
the whole state space is traversed. Model checking, for instance, provides a counterexample
guiding the developer to the erroneous system behaviour—is there is any. This helps to gain
insight into the problem and helps to fix it. Formal verification, however, has also some
drawbacks: (i) It is difficult and time-consuming, (ii) it is only as reliable as the used formal
models, and (iii) it’s difficult to prove that a proof is correct. Despite this complexity, during the
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last years, formal verification tools have been introduced, in industrial development processes:
from security and safety related projects, over hardware circuit verification to software driver
verification. Model checking techniques has been, in some fields, very successful [CW96];

Formal verification encompasses a set of techniques available for developers to assist the de-
velopment and to improve the system’s quality. However, it should be used in conjunction
with informal verification methods as testing, which are complementary techniques, in order
to increase reliability of the system under development. Formal verification enhances reliabil-
ity of the system by ensuring that it meets its functional requirements, in particular at earlier
stages of system design. Nevertheless it is notable that it does not ensure that the system
being developed is completely correct. Formal methods [CW96] are the theoretical basis for
formal verification and are used for specifying and verifying systems through mathematically
based languages, techniques, and support tools. System specification means expressing the
system requirements in a mathematical or formal language. System verification is applied af-
ter the specification and formally proves that the system meets its requirements. Several tools
are available for specifying and verifying system, providing the developers suitable notations,
formalisms, and algorithms.

In industry formal verification of hardware and software systems has acquired popularity. In
the hardware sector, formal verification techniques have been applied successfully and thus
have also encouraged the software sector to consider whether similar benefits could be accom-
plished in program verification [OL07]. Despite proofs of correctness for computer programs
are available since early times of computer science, such academic works were ignored by indus-
try citing advances in research as “impractical” [Hoa87]. However, properties of hardware and
software system are extremely different, namely the strict structure of hardware, the inherently
finite state of hardware, and the limited size of hardware [SBH04]. Whether the success story
of formal verification of industrial hardware can be reproduced in software is still uncertain.
Some progress has been made, despite many challenges still remain [ASM+08].

Formal verification needs basically the following ingredients: first, a mathematical model of the
system is needed and second, formally specified requirements have to be provided, that should
be satisfied by the model. There are two fundamental verification techniques: model checking
and theorem proving. In the industrial context, both techniques are applied for hardware
verification to complement standard methods such as testing and simulation. Researchers and
practitioners that work in the specification and verification sectors are applying progressively
industrial case studies, therefore gaining the benefits of using formal methods.

Outline We subdivide formal verification techniques into (i) static analysis, techniques that
elaborate information on the behaviour of a program without executing it, and (ii) theorem
proving, i.e., the process of finding a proof of a property where the system itself system and
its properties are expressed as formulas in some mathematical logic.

In the next subsections we describe three techniques for static analysis. We start with abstract
static analysis in Section 5.1.1, these techniques are used in software development tools, e.g.,
for pointer analysis in modern compilers. A formal basis for such techniques is Abstract
Interpretation, introduced by Cousot and Cousot [CC77b]. The second part in Section 5.1.2 is
about model checking that was introduced by Clarke and Emerson [CE82], and independently
by Queille and Sifakis [QS82]. The basic idea is to determine if a correctness property holds

9



by exhaustively exploring the reachable states of a program. If the property does not hold,
the model checking algorithm provides a counterexample, i.e., an execution trace leading to a
state in which the property is violated. Since the state space of software programs is typically
too ample to be examined in a reasonable time and memory occupation, model checking is
often combined with abstraction techniques.

Finally, the third part in Section 5.1.3 is dedicated to a formal technique that performs a depth-
bounded exploration of the state space. This technique is called Bounded Model Checking
(BMC) since it is a special form of model checking. BMC is presented separately since the
requirement to analyse the entire state space is not needed, in fact BMC explores program
behaviour exhaustively, but only up to a given depth. As a consequence faulty behaviour that
require longer paths are missed. Then we highlight in Section 5.2 on theorem proving [RSS95].
In theorem proving, a system and its properties are described by means of logical formulas and
the system is shown by means of a logical proof to entail the desired properties.

5.1 Static Analysis

Static analysis comprises a class of techniques for automatically computing information about
the behaviour of a program without executing it. Most problems and questions about the
behaviour of a program are undecidable or infeasible to practically compute an answer. The
basics of static analysis efficiently compute approximate but sound guarantees, guarantees that
are not misleading.

5.1.1 Abstract Static Analysis

Abstract Interpretation According to Cousot, abstract interpretation “is a theory of approx-
imation of mathematical structures, in particular those involved in the semantic models of
computer systems. Abstract interpretation can be applied to the systematic construction of
methods and effective algorithms to approximate undecidable or very complex problems in
computer science” [Cou05]. A set of concrete values is transformed in an approximate rep-
resentation named abstract domain. An abstraction function is used to map concrete values
to abstract ones. In order to obtain an approximate solution, the meaning of a program is
translated into an abstract domain through abstract interpretation. We can derive from a con-
crete interpretation an abstract interpretation by defining counterparts of concrete operations
in the abstract domain. If certain mathematical constraints between the abstract and concrete
domains are met, fixed points calculated in an abstract domain are guaranteed to be sound
approximations of concrete fixed points [CC79]. During the last years, static analysis using
abstract interpretation has been very successfully applied to verify properties of real-time and
safety-critical embedded systems [CC04].

Numerical Abstract Domains According to Sliva and others, over the years, “various abstract
domains have been designed, particularly for computing invariants about numeric variables”
[DKW08]. The expressive power of a domain affects the class of computable invariants and
thus the properties that can be proved.
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It is defined a numerical abstract domain for parametrising a static analyser, that is, a set
of computer-representable numerical properties with algorithms to calculate the semantics
of program instructions. Examples of numerical abstract domains are: the interval domain
[CC77a] that detects variable bounds, and the polyhedron domain [CH78] for affine inequalities.
Each domain equilibrates some cost in respect to precision.

Shape Analysis Shape analysis is a static code analysis method, that verifies and finds in
computers programs properties of data structures. Usually, it is used to prove high-level
specifications and find software bugs properties at compile time. The resources required in
terms of runtime limit its spread to non-academic industrial use, despite it is a powerful
technique.

5.1.2 Model Checking

Model checking is a technique that builds a formal model of a system and checks whether it
satisfies a desired property. Generally the check is performed as an exhaustive state space
search on the model. As is is applied on finite models, it is guaranteed that the search termi-
nates. The main challenge is to devise and improve algorithms as well as data structures, that
are capable to search in large state spaces. Model checkers, i.e., tools, which perform model
checking, take two inputs: a finite state model of the system and a property specified formally.
A model checker proofs whether the system satisfy the property, and provides a “yes” or “no”
answer. If the system does not satisfy the property, the answer is “no” and it is also pro-
vided a counterexample, i.e., a trace (system run) violating the property. Counterexample are
useful in order to find bugs in the system design as they guide developers to the unintended
behaviour. Figure 2 describes the model checking process. Model checking has been used
mainly in hardware and protocol verification [CK96], nowadays this technique is also applied
to software systems.

Finite state 
system

No +
Counter
example

Model Checker

Specification

Yes

Figure 2: Overview of Model Checking

In today’s practice, two general approaches are used: the first, temporal model checking, is a
technique developed independently in the 1980s by Clarke and Emerson [CE82] and by Queille
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and Sifakis [QS82]. There, the specifications ϕ are expressed in a temporal logic [Pnu81] and
the model M as a finite transition system. Verification is performed through an efficient search
procedure, which checks if the finite state transition system is a model for the specification,

i.e. M
?

|= ϕ.

In the second approach, the system and the specification are modelled as automata, then
the system is compared to the specification to determine whether its behaviour conforms to
the specification. Different notions of conformance have been proposed, as language inclusion
[HK90, Kur94b], refinement orderings [CPS94, Ros94], and observational equivalence [CPS94,
FGK+96, RS91]. The authors of [VW86] have related these two approaches, showing how the
temporal logic model checking problem could be recast in terms of automata.

Model checking is completely automatic and fast, in contrast to theorem proving, sometimes
producing an answer in a relative short time. We can use model checking to prove partial
specifications, i.e., even if the system is not totally specified, it can provide useful information
about the system correctness. Especially if the property is not satisfied, a counterexample
is provided, which usually represents subtle errors in design and can be used to improve the
debug phase.

The state space explosion problem is the main disadvantage of model checking. In 1987 McMil-
lan proposed Bryant’s ordered binary decision diagrams (BDDs) [Bry86] to represent the state
transition systems in a more efficient way. That increased the size of these systems that could
be proven. In order to ease the state space explosion problem, other approaches have been
suggested, as for instance the exploitation of partial order information [Pel94], localisation
reduction [Kur94b, Kur94a], and semantic minimisation [JCE97] to eliminate unnecessary in-
formation from a system model.

Today, model checkers are routinely expected to work with systems having between 100 and
200 state variables. Systems with 10120 reachable states have been checked by model checkers
[BCL+94] and also systems with an essentially unlimited number of states using abstraction
techniques [CGL94]. Therefore it is now powerful enough to be used in industry.

5.1.3 Bounded Model Checking

In the semiconductor industry bounded model checking (BMC) is one of the most commonly
applied formal verification technique. The success of this technique comes from brilliant per-
formance of propositional SAT solvers. Biere and others have introduced it in 1999, as a
complementary method to BDD-based and unbounded model checkers [BCCZ99]. BMC vis-
its the states within a bounded number of steps, say k, for this reason it is called bounded.
When using BMC, the propositional formula is built by unwinding the system for k times in
conjunction with a property. Next the obtained formula is passed to an efficient SAT solver. If
and only if there is a trace of length k that contradicts the property the formula is satisfiable.
If the propositional formula is unsatisfiable, we cannot be certain about the correctness of the
verification, because there may be counterexamples longer than k steps. However, many bugs
have been detected that otherwise would not have been found. Bounded model checking is
applied in many areas very successfully.
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Considering a propositional formula, a satisfying assignment corresponds to a path from the
initial state to a state that violates the property. BMC provides a full counterexample trace
in case of the property is not satisfied, and it is one of the best techniques to identify shallow
bugs. The range of programs that are supported by BMC is wide, included also dynamically
allocated data structures. In this case, BMC does not require built-in knowledge about the
data structures that the program maintains. But then completeness of such a technique is only
obtainable on very “shallow” programs, i.e., programs without deep loops.

5.2 Theorem Proving

Theorem proving uses formulas in some mathematical logic or theory, to express the system
and its properties [CW96]. A formal system gives this logic, which defines a set of axioms and
a set of inference rules. In practice, theorem proving finds from the axioms of the system a
proof of a property. The proof is composed of steps which invoke the axioms and rules, and
possibly derived definitions and intermediate lemmas.

Theorem proving approaches perform verification using a calculi that is based on two principal
works. The first is by C.A.R. Hoare which presents a calculus to reason about program
correctness in terms of pre and post conditions [Hoa69]. The second is by E.G. Dijkstra, who
extended Hoare’s ideas in the notion of “predicate transformers” which begins with a post
condition and uses the program code to determine the pre condition, instead of starting with
a pre condition. This post condition is needed to create the pre condition [Dij75]. Hoare’s
approach introduced the concept of a “Hoare triple”, which is a formula in the following form:

{PRE} P {POST}

We can read this formula as “if property PRE holds before program P starts, POST holds
after the execution of P”. Depending on the portion of the system to be verified, the program
P can refer to an entire program or to a function call. In Hoare’s calculus, the derivation of
POST based on PRE and P , is performed using axioms and rules of inference. In the case of
software verification, the Hoare’s syntax of P may correspond to an imperative language with
usual constructs (assignments, conditional branches, loops, and sequential statements).

Nowadays, theorem proving is progressively used in the verification of safety-critical properties
of hardware and software systems. We can coarsely categorise theorem provers into the classes
(i) highly automated, (ii) general-purpose programs, and (iii) interactive systems with special-
purpose capabilities. On the one hand, approaches based on automatic verification have been
useful as search procedures and were successfully applied in solving combinatorial problems.
On the other hand, interactive systems were more appropriate for mechanising formal methods
and the formal development of mathematics [CW96].

Theorem proving can deal with systems having an infinite state spaces, whereas model checking
cannot. In order to prove properties on infinite domains, it entrusts on techniques such as
structural induction. The interactive theorem proving process is slow and often error-prone,
because, as the name suggests, it requires interaction with a human. However, the user often
gains useful insight into the system or the property being verified, during the process of finding
the proof.
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6 Case studies

In the previous sections, we introduced the range of verification methodologies and specification
types. In order to provide a sense of the state-of-the-art in verification, we now report selected
case studies, primarily taken from an industrial setting.

6.1 Inspections, Reviews, and Walkthroughs

Important and successfully operating companies such as NASA’s Software Engineering Labo-
ratory (SEL), Allianz, Motorola, or IBM, are using these techniques. They report up to 95%
defect detection rates even before testing, 50% cost reduction for newly written lines of code,
and even a reduction of the delivery times by up to 50% [RCJ+08].

Industrial case studies The NASA Software Engineering Laboratory (SEL) was founded in
1976, and its scope is to introduce state-of-the-art techniques and practices, and check their
value for software development organisations. In the course of its 25 years of work, SEL
managed to reduce defects rates by 82% during development, and decrease development cost
by 74%, despite the complexity and functionality of the systems raised fivefold [RCJ+08].

The SEL chose inspections as one potential cutting-edge technology [RCJ+08]; they introduced
inspections based on Fagan’s paper in 1976. These code inspections used multiple reviewers
and were based on ad-hoc reading. They did not necessarily follow a specific protocol or use
a moderator for the inspection meetings, and they did not collect any data. These are the
main differences compared to Fagan’s inspections [Fag99]. Altogether, the decision makers
were convinced form the available evidence that formal inspections were successful, and formal
Fagan inspections were defined as a standard around 1980. Therefore, every project had to
use inspections or justify why they did not use.

6.2 Static Analysis

6.2.1 Abstract Static Analysis

Lint [DKW08] is a popular static analysis tool released in 1979 by Bell Labs. It is used for
detecting errors in C programs. The kind of found errors, produced warnings, and the user
experience are extended and inspire many modern tools. For instance, FindBugs [DKW08]
is a modern tool with analogous features for Java. These two tools are significant and have
influenced other static analysis tools, nevertheless they are unsound and provide no rigorous
guarantees.
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Industrial case studies We refer to a market survey reported in [DKW08] and list some
worthy tools from it.

CodeSonar by Grammatech is a tool based on inter-procedural analyses to check for
template errors in C++ code. The errors detected are: buffer overflows, memory leaks,
redundant loops, and branch conditions. There is the K7 tool from KlocWork, with a
similar characteristic and the support for Java [DKW08].

PREVENT is a static analyser with features—similar to CodeSonar and EXTEND—a
tool to implement coding standards, both are produced by Coverity. Coverity tools were
utilised, in January 2006, in over 30 open source projects to check errors [DKW08]. This
experiment was part of an United States Department of Homeland Security sponsored
initiative.

Abstract interpretation was used to detect the error leading to the failure of the Ariane 5
[LMR+98]. The Astrée static analyser [BCC+02] has been used to prove the flight control
software of an Airbus aeroplane. It also implements abstract domains to identify buffer
overflows and undefined results in numerical operations.

NASA has developed the C Global Surveyor (CGS), a static analyser specially developed
for space mission software. The software used on the Mars Path-Finder, Deep Space
One, and Mars Exploration Rover, has been analysed using the CGS and C/Ada static
analysers produced by Polyspace Technologies.

PAG is a program analyser generator marketed by AbsInt GmbH. It is used to analyse
architecture-dependent properties such as worst case execution time, cache performance,
stack usage, and pipeline behaviour [DKW08].

Program annotations such as types, pre- and post-conditions, and loop invariants are
required for several tools. Such information may increase the burden of the model, but
they may reduce the complexity and at the same time improve the verification precision.
The ESC/Java tool family [FLL+02] and Microsoft’s PREfix and PREfast [LBD+04] use
these approaches. SPARK [Bar03] and Spec# [BLS04] have build in annotation and
verification support right in the programming languages and development environments.
Thus, annotations become part of the system design.

6.2.2 Model Checking

In the following we list some well-known model checkers, roughly categorised according to
whether the property (to verify) is given as a logical formula or as a state machine:

Temporal logic model checkers Chronologically, the first two model checkers were EMC
[CE82, CES86, BCDM86] and CÆSAR [QS82, FGK+96]. The model checkers Murφ [DDHY92]
and UV [Kal94] are based on Unity programming language [Cha88]. The Concurrency Work-
bench [CPS94] checks properties expressed as µ-calculus formulas in systems specified as CSS
processes. SVE [FSS+94], FORMAT [DJS95, Klo01], and CV [DB95] are tools concentrated on
verification of hardware systems. There are model checkers specialised on hybrid systems, as for
example HyTech [AHH96], and on real-time systems, for instance Kronos [DY95, HNSY94].
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SPIN (Simple Promela INterpreter) [GPV+95, Hol91] is a successful and widely used model
checker, that won the ACM software system award in 2001. SPIN is open source and used to
validate large scale applications, like communication protocols for distributed systems, network
applications, multi-threaded code, and for academic purposes, as well. In order to reduce
the state space explosion problem, SPIN implements partial order reduction [HP95, Pel94].
Systems are specified using the Promela language, as a set of automata and the properties
to check are expressed in linear-time temporal logic (LTL) formulas. Some verification tools
translate source code to Promela and then use SPIN to verify it, as for instance an early version
of the Java Pathfinder (JPF) for Java code [VHB+03].

SMV (Symbolic Model Verifier) [McM92] is the first model checker that uses binary decision
diagrams (BDD) in order to reduce the state space. Systems are modelled in an own automaton
notation and the desired properties are expressed as branching-time temporal logic (CTL)
formulas. The UPPAAL [BDL04] model checker is based on the theory of timed automata
[AD90], systems are modelled as real-time systems and it has been used successfully in case
studies ranging from communication protocols to multimedia applications.

CMC [MPC+02] and Microsoft Research’s Zing [AQRX04] are two representatives of the
explicit-state software model checkers. In order to avoid the state space explosion problem
the VeriSoft verification tool discards the visited states [God97], therefore the visited states
may be repeatedly visited and explored because they are not stored. This approach has to
limit the depth of its search to eschew non-termination and is state-less. The SLAM toolkit
[BCLR04] is a predicate abstraction model checker, developed by Microsoft Research. It rep-
resents the first successful implementation of predicate abstraction theory. It verifies a set of
about 30 predefined, system specific properties of Windows device drivers, such as “a thread
may not acquire a lock it has already acquired, or release a lock it does not hold”. It incorpo-
rates the predicate abstraction tool C2BP [BPR01, BMMR01], the BDD-based model checker
Bebop [BR00a] for boolean programs [BR00b], and the simulation and refinement tool Newton
[BR02]. It is possible to use the BDD-based model checker Moped [ES01] instead of Bepop,
to prove temporal logic specifications. Moreover, SLAM can check properties that depend on
bit-vector arithmetic, if it is combined with Cogent [CKS05a], which is a decision procedure
for machine arithmetic.

The Berkeley Lazy Abstraction Software Verification Tool (BLAST) is a software model check-
ing tool for C programs. BLAST uses lazy abstraction, i.e., only relevant parts of the original
program are re-abstracted in the refinement step [HJMS02]. Abstraction is built by the CE-
GAR (Counterexample guided abstraction refinement) iterations. Each iteration has a speed-
up due to the close integration of the verification and refinement phases. BLAST uses Craig
interpolation to derive refinement predicates from counterexamples [HJMM04] and provides a
language to specify reachability properties.

SATABS is a verification tool for C/C++ programs, where the abstractions and the symbolic
simulation of counterexamples is performed using a SAT-solver [CKSY03]. The reachable
states of the abstract program are computed with the SAT-based model checker Boppo, which
depends on a QBF-solver for fixed point detection [CKS05b]. As C programs are prone to
arithmetic overflow, and allow to model arrays and strings, SATABS automatically produces
and verifies proof conditions for array bound violations, invalid pointer dereferencing, divi-
sion by zero, and assertions provided by the user. SATABS can verify concurrent programs
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that communicate via shared memory. Boppo combines symbolic model checking and par-
tial order reduction to handle concurrency [CKS05b], but this method has scalability issues
[WBKW07].

YASM is a software model-checker which implements the abstraction-refinement process for
program analysis and liveness properties [GC06]. The Terminator tool also checks liveness
properties and is based on SLAM [CPR05]; it is not dependent on predicate abstraction and can
be founded on any software model checker. Sagar Chaki’s MAGIC framework is a compositional
model checkers that separates the model to verify into several smaller components. On those
components, verification is applied separately [CCG+03]. It does not support shared memory,
but can check concurrent programs that utilise message passing. There is an experimental
version of SLAM, modified for checking concurrent programs. In such version Bebop can be
replaced by either the explicit state model checker Zing [AQRX04] or the SAT-based tool
Boppo [CKS06].

Behaviour conformance checkers The Cospan/FormalCheck is a commercial model checker
based on showing inclusion between ω-automata [DPG96, HK90]. FDR (Failures-Divergence
Refinement) is a model-checking tool for CSP programs [Ros94], which has been used to verify
the Needham-Schroeder authentication protocol [Low96]. The Edinburgh Concurrency Work-
bench (CWB) is an automated tool for the manipulation and analysis of concurrent systems
[CPS94]. CWB checks a notion similar to FDR of refinement between CCS programs, and in
particular it allows for various equivalence, preorder and model checking using a variety of dif-
ferent process semantics. CWB and the tool Auto [RS91] can determine whether two systems
are observably equivalent and minimise systems with respect to observational equivalence.

Combination checkers Hojafi et al. [HBK93] combine model checking with language inclu-
sion. Stanford’s STeP is used to verify reactive, real-time, and hybrid systems based on their
temporal specification [BBC+96]. STeP combines deductive methods with model checking.
VIS (Verification Interacting with Synthesis) is a toolkit for formal verification, synthesis, and
simulation of finite state systems [BHSV+96], which compounds logic synthesis with model
checking [BHSV+96]. The PVS (Prototype Verification System) theorem prover integrates a
model checker, used to verify µ-calculus properties [RSS95]. Finally, MetaFrame is an envi-
ronment for formal methods-based, application-specific software design, which supports model
checking in the entire software development process [SMCB96].

Industrial case studies In industrial-size settings, case studies have been accomplished using
model checking. They attest that model checking is starting to become applicable in industry,
using existing tools or constructing its own model checkers.

In the early 1990s AT&T used model checking techniques in the development of the
International Telecommunication Union (ITU) ISDN User part. A part of the protocol
written in SDL (about 7500 lines) were checked to satisfy 145 requirements; about 55%
of them were detected to be logically inconsistent. Moreover, 112 errors were detected
[CW96].
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In 1992, the model checker SMV was used from a research group at CMU for the verifi-
cation of the IEEE Futurebus+ standard 896.1-1991. This is also the first employment of
model checking techniques to verify an IEEE standard [CW96].

NASA’s Deep Space One flight software was verified in 2001 using the SPIN model checker.
The verification reveals a know error in the launch software, but more important, discov-
ered another scenario under which a related error could happen. SPIN is also used in
several other industrial case studies [GH02].

In 1999, the verification of a protocol for controlling the switching between power on/off
states in audio/video devices was successfully performed by UPPAAL [HLS99].

Currently the Static Driver Verifier (SDV) tool, based on SLAM, is part of the beta of
the Windows Driver Development Kit (DDK) [DKW08].

6.2.3 Bounded Model Checking

In the software verification community, BMC has been widely implemented, Currie et al.
[CMH+00] provided the first implementation of a depth-bounded symbolic search for software.
At the Carnegie Mellon University CBMC has been developed, as one of the first solutions
of BMC for C programs, and the only one that also supports C++, SpecC and SystemC
[CKY03, CKL04]. One of the principal application of CBMC is the verification of consistency
between system-level circuit models given in SystemC or C and an implementation given in
Verilog. F-SOFT is a tool for C code analysis, which implements SAT-based verification for
BMC decision problems, static analyses and predicate abstraction [ISGG05].

Another variants of a BMC-based implementations, is a version of CBMC that generates a
decision problem for an SMT solver for integer linear arithmetic [AMP09]. In [CR06], the
authors evaluated the performance of constraint solvers on such decision problems.

Saturn is a SAT-based framework for C programs [XA05]. It has been used for to verify
two selected properties of the Linux kernel code: NULL-pointer dereferences and locking API
conventions. The authors showed that the tool is scalable enough to analyse the entire Linux
kernel.

The EXE tool checks C programs for finding bugs in system-level software, combining explicit
execution and path-wise symbolic simulation [YST+06]. It can check programs that contain
arbitrary pointer type-casts, because it uses a low-level memory model.

TCBMC (Threaded-C Bounded Model Checking) is an extension of CBMC for concurrent
C programs proposed by IBM [RG05]. They performed preliminary experiments: a naive
concurrent implementation of bubble sort has been checked using TCMB.

6.3 Theorem Proving

Similar to model checking, the interest in theorem proving has been growing during the last
years. In fact an increasing number of theorem provers and examples have been applied. In the
following, we categorise some theorem provers with respect to their degree of automation:
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User-guided automatic deduction tools Several tools are guided by a sequence of lemmas
and definitions but each theorem is proved automatically using built-in heuristics for induc-
tion, lemma-driven rewriting, and simplification. Systems based on this approach are ACL2
[KM02], Eves [CKM+88], LP [GG88], Nqthm [BM88], Reve [Les83], and RRL [KM87]. In
particular, Nqthm has been used to verify a proof of Gödel’s first incompleteness theorem and
in other large-scale verification problems. Jahob [KR06] is an example of a system for program
correctness based on theorem proving. This system analyses annotated programs written in
a subset of Java describing annotations with formulas in a subset of Isabelle [WPN08] as the
specification language. VCC [DMS+09] is an automatic tool that takes as input annotated C
code and verifies partial correctness. The annotation language is classical first-order predicate
logic with C-like syntax, such that developers can easily understand the annotations, which can
be kept inline with the code. Automatic theorem provers such as E [SLKL04], SPASS [Wei01],
and Vampire [RV01] are based on the resolution principle. They have gained a high degree
of sophistication, however they reason in first-order logic that may be a limitation in some
area. TPS [AB96] and LEO-II [BPTF08] are higher-order logic automatic theorem provers.
TPS can only cope with small problems, because it is based on an old architecture, whereas
LEO-II is designed for collaboration with provers for first-order and propositional logic. An
example for an first-order automatic theorem prover’s verification had been the braking of
security application programming interfaces in the Cambridge-MIT work [YAB+05]. Cohen’s
security protocol verifier [Coh00] is another example which uses SPASS.

Interactive theorem provers The Edinburgh Logical Framework (LF) [HHP87] is a widely
used meta-language for representing proof systems. The proof checking is reduced to LF
type checking. The Edinburgh Logical Framework is based on a general treatment of syntax,
rules, and proofs by means of a typed λ-calculus with dependent types. The logical systems
are constructed by a formal system that generates formal presentations. LF also includes
an informal method of finding such presentations. The Twelf system relies on the LF type
theory [PS99]. It is a tool for experimentation in the theory of programming languages and
logics. The specification of object languages and their semantics, implementation of algorithms
manipulating object-language expressions, deductions, and formal development of the meta-
theory of an object language are supported by Twelf.

In the 1970s, the Stanford LCF [GMW79, CAA+86] has been developed as one of the first
proof checkers. The general purpose programming language ML was introduced in LCF, to
permit users to write theorem proving tactics. There are propositions of a special “theorem”
abstract data type, in LCF, to specify theorems. In order to guarantee that theorems are
derived using only the inference rules given by the operations of the abstract type, the system
relies on the ML type system. Successors of LCF include Coq, HOL and Isabelle.

Coq [FHB+97] is a proof assistant for type theory, allowing the development of computer
programs consistent with their formal specification. Coq supports to express mathematical
assertions, and then mechanically proves the proofs of these assertions. It works to individuate
formal proofs, and from the constructive proof of its formal specification, proves a program.
Coq comprises automatic theorem proving tactics and decision procedures, despite it is not
an automated theorem prover. LEGO [LP92] is a tool for interactive proof development in
the natural deduction style and it supports refinement proof as a basic operation. It has been
employed in a proof of the strong normalisation theorem of the second-order λ-calculus, the
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proof of Tarski’s fixed point theorem, program specifications, program correctness proofs, and
other scientific problems.

HOL (Higher Order Logic) [Gor87] denotes a set of interactive theorem proving systems sharing
similar logics and implementation strategies. Initially, HOL was destined to be used for the
specification and verification of hardware systems, nevertheless it has been applied also to
other sectors. At Cambridge University, Mike Gordon has modified the Edinburgh LCF system
creating the original HOL system, by adding a version of Church’s higher order logic as the
object language of the system. Edinburgh ML (implemented on top of Lisp) was the meta-
language used for encoding the logic. After some years of further development, in 1988 an
improved version of HOL named HOL88 was released. Slind at the University of Calgary
elaborated a port of HOL88 to SML: HOL90 (released in 1990) that ran on Poly/ML and
SML/NJ. In this version the Lips substrate was removed and also some LCF technologies was
reimplemented or trimmed off. In 1998, HOL98 was released. It was based on a new design
and introduced a port to MoscowML [NS]. The last version of HOL is HOL4 [SN08], which is
currently running on top of Poly/ML and MoscowML and which is also the supported version
of the system for the international HOL community. Compared to the precedent HOL releases,
HOL4 brought in more novelties.

Isabelle [WPN08] is a generic proof assistant and a successor of HOL. It comprises tools for
proving mathematical formulas expressed in a formal language, through a logical calculus.
The formalisation of mathematical proofs and, in particular, formal verification is the main
application of Isabelle. In particular, this includes proving the correctness and properties of
systems, computer languages and protocols. Isabelle/HOL is nowadays the most widespread
instance of Isabelle, which supports a higher-order logic theorem proving environment and
comprises a powerful specification tool for data types, inductive definitions, and functions with
complex pattern matching [Kra10]. The language Isar is a structured proof language used in
Isabelle for conducting proofs, understandable for both humans and computers. Following the
general idea of natural deduction, the Isabelle/Pure meta-logic permits the formalisation of the
syntax and inference rules of a wide range of object logics [Pau86, Pau90]. Isabelle logical core
is implemented concording to the “LCF approach” of secure inferences as abstract datatype
constructors in ML [GMW79].

Sophisticated extra-logical infrastructure supporting structured proofs and specifications are
provided in Isabelle/Isar, including ideas for modular theory development. Isabelle/ZF (Zermelo-
Fraenkel set-theory, see [Pau98, Pau00]) and Isabelle/HOLCF (Scott’s domain theory within
HOL) [MNOS99] are other worthy object logics, that have been applied to formalise and verify
hard problems in mathematics and in program verification.

Some hard number-theoretic problems due to Ramanujam have been successfully checked by
Analytica, which combines theorem proving with the symbolic algebra system Mathematica
[CZ92]. Powerful decision procedures and model checking are compounded with interactive
proof in the tools PVS [ORS92] and STeP [BBC+96]. Notable examples of the PVS verifi-
cation using a high-order logic, are: hardware designs, reactive real-time, and fault-tolerant
algorithms.
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Industrial case studies

The Pentium FDIV bug that caused Intel to take a $475 million charge against revenues,
was a problem in the lookup table of an SRT divider. The SRT is a popular method for
division in many microprocessor implementations. After that bug, various communities
have successfully verified the system [Pra95]. A group from Stanford Research Institute
provided a verified treatment of the general theory of SRT division, using the PVS theorem
prover.

In the mid nineties, Motorola has formally specified its Complex Arithmetic Processor used
for Digital Signal Processing (DSP), working with the ACL2 theorem prover. During the
design process of various DSP algorithms, their binary micro code has been continuously
verified.

In the Verisoft project a computer system from the hardware, up to an operating system
kernel [ASS08] and a compiler for a C-dialect [LP08] have been formalised. The L4
operating system microkernel was proved in the L4.verified project [HEK+07, TKN07],
relating an abstract specification, a Haskell model, and the C code.

7 SPES Survey Results

On April 23rd 2009 the Technische Universität München distributed a survey to all partners
of the SPES project. The scope of the survey was to obtain an idea on which tools and
methods are currently used in industry, for the development of embedded systems, and so derive
requirements for a next generation of industrial tools. The 25 questions cover programming
languages, tools, operating systems, and technologies to develop embedded systems. The
project partners are industries, universities, and research centres in the domain of avionics,
medical, automotive, energy, and automation engineering. We contacted all the SPES partners
and until July 31th, 2009, we altogether received 24 completely filled out questionnaires.

There are two questions concerning analysis techniques, for collecting the methods and tools
utilised by the partners. The first (Figure 3) collects the methods and the second one (Figure 4)
the tools, used for quality assurance. For both the questions the companies had the possibility
of response with multiple answers. Almost every project performs manual tests and code
reviews for quality assurance (96% and 83%, respectively). Other formal methods like test case
generation and runtime verification are adopted in 63% of the projects. The respondents also
named other methods like airplane testing, automated testing, design review, model review,
requirements review, based on the guidelines for development of aviation software RTCA/DO-
178B, system simulation, and system testing. With a share of 38%, Polyspace (cf. Section 6)
is the most popular quality assurance tool. Although MATLAB/Simulink itself is widespread,
the Simulink Design Verifier is not used in many cases. 38% of the respondents have not
specified a tool, and thus do not seem to use a tool for quality assurance at all. 21% of the
respondents named other tools like Automatic Test Sequenzer, FTI test environment, PC-lint,
TAU, TechSat ADS-2 Test-Benches, and XLINT. The high number of tools used for quality
assurance provides evidence for the heterogeneity of the tool landscape in industry.
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8 Techniques Comparison

The presented analysis techniques have different characteristics and purposes, we summarise
these differences making some significant direct comparisons between a couple of theories.

Runtime Verification versus Model Checking There are many similarities between runtime
verification and model checking, nevertheless there are also important differences. In model
checking, to answer whether the system satisfies a given property all execution paths have to be
analysed. In terms of language theory, model checking corresponds to the language inclusion
problem. Instead, runtime verification deals with the word problem, that has in most of the
logical systems a lower complexity than the inclusion problem [BLS09].

Runtime verification performs the verification on finite traces, whereas model checking, spe-
cially in case of LTL, deals with infinite traces. Moreover, the finite executions in runtime veri-
fication (especially with online monitoring), have an increasing size, instead in model checking
the model is complete for considering arbitrary positions of the trace.

Runtime Verification versus Testing Runtime verification is not an exhaustive technique,
because it does not evaluate each execution of a system, but only a finite subset. This is
an important characteristic that is in common with testing, so both the methods are usually
incomplete. In testing, usually a test-case considering a finite number of input-output sequences
of the system is defined. Next the test is executed using the input values and it is checked
whether the resulting output values correspond to the expected ones.

However, there is a type of testing that is similar to runtime verification: oracle-based testing.
There, the produced output values of the system under test, for a given test case input,
are compared to those provided by an oracle. In this sense, the system is observed by the
oracle and hence in terms of runtime verification the oracle behaves as a monitor. Runtime
verification can be interpreted as a form of testing, nevertheless there are differences in the
emphases. Typically, an oracle is defined directly, rather than generated from some high-level
specification. Contrariwise in runtime verification, we do not consider the preparation of a set
of input sequences to “exhaustively” test a system [BLS09].

Model Checking versus Theorem Proving There is a fundamental difference between theo-
rem proving and model checking. We have to point out that theorem provers do not necessitate
to exhaustively visit the system’s state space to verify a property.

Since theorem provers reason about constraints on states, and not instances of states; they can
deal with infinite state spaces and state spaces regarding complex data types and recursion.
Furthermore, the proofs in theorem proving are explored in the syntactic domain, which is
typically smaller than the semantic domain explored by model checkers. Therefore, systems
with complex data structures, but simple information flow are adequate for theorem provers.
Even though theorem proving is limited in the support for fully automatic verification in some
cases [Duf91], a satisfactory level of automation is reached with matured theorem provers
[DDN+03]. The verification of inductive structures, for instance trees, stacks, or lists, cannot
be automated, however can be computed through mathematical induction. Anyway, the lack
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of automation can be acceptable in some cases for increased capabilities, also because this type
of analysis cannot be performed by model checkers.

The advantages of theorem provers over model checkers are, viz the superior dimension of the
system to verify and the possibility to reason inductively. But there are also disadvantages, as
for instance their proof can be highly large [ASM+08] and difficult to understand, furthermore
they require a great portion of user expertise and effort to be utilised [AVM03]. In particular
this last point may be the greatest obstacle to the diffusion of theorem proving.

There have been appreciable attempts in the past, to integrate model checking and theorem
proving [Sha00, AKMR03], despite they seam to be contradictory approaches. Their char-
acteristics in terms of automation and scalability give complementary benefits, therefore it
is possible that this trend will continue and model checking will be used on systems with a
reasonable size, whereas theorem proving will be used on sizeable systems [Hol03].

9 Conclusion

We presented major analysis techniques and their actual state in research and industry. We
conclude that the use of analysis techniques has proven to be successful in verifying safety-
critical software, protocol standards, embedded systems, and industrial hardware designs. The
role of analysis techniques is increasing in the system development process, due to the benefits
of their use and to the commercial interest to produce high-quality systems. In the future,
when specification and analysis tools will be more effectively integrated into the development
tools, companies will utilise those methods in the development process more and more. Today
they are not widespread employed, also due to the difficulties to understand the tools and the
specification of the properties to be analysed. For formal verification, in particular, research
is directed in developing tools and notations that are easy to use and comprehensible for
developers, that are no domain experts in the field of formal verification.

A Formal Verification Taxonomy

We summarise in Figure 5 the major tools used in formal verification.
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[CM04] Séverine Colin and Leonardo Mariani. Run-Time Verification. In Manfred Broy,
Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner,
editors, Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes
in Computer Science, pages 525–555. Springer, 2004.

[CMH+00] David W. Currie, Billerica Ma, Alan J. Hu, Sreeranga Rajan, Masahiro Fujita,
and Sunnyvale Ca. Automatic Formal Verification of DSP Software, 2000.

[CMMP95] Tim Coe, Terje Mathisen, Cleve Moler, and Vaughan Pratt. Computational as-
pects of the pentium affair. Computing in Science and Engineering, 2(1):18–31,
1995.

[Coh00] Ernie Cohen. Taps: A first-order verifier for cryptographic protocols. Computer
Security Foundations Workshop, IEEE, 0:144, 2000.

[Cou05] Patrick Cousot. The verification grand challenge and abstract interpretation. In
Bertrand Meyer and Jim Woodcock, editors, VSTTE, volume 4171 of Lecture
Notes in Computer Science, pages 189–201. Springer, 2005.

[CPR05] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement
for termination. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of
Lecture Notes in Computer Science, pages 87–101. Springer, 2005.

[CPS94] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-
bench: A semantics based tool for the verification of concurrent systems. ACM
Transactions on Programming Languages and Systems, 15, 1994.

[CR06] Hélène Collavizza and Michel Rueher. Exploration of the Capabilities of Con-
straint Programming for Software Verification. In Hermanns and Palsberg [HP06],
pages 182–196.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the Art
and Future Directions. ACM Computing Surveys, 28(4):626–643, December 1996.
Report by the Working Group on Formal Methods for the ACM Workshop on
Strategic Directions in Computing Research.

[CZ92] Edmund M. Clarke and Xudong Zhao. Analytica - A Theorem Prover for Math-
ematica. Technical report, Pittsburgh, PA, USA, 1992.
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