
TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

Software & Systems Engineering
Prof. Dr. Dr. h.c. Manfred Broy

SPES 2020 Deliverable D1.4.A-7/8

Distributed Modeling in Context of the
Functional and Logical View

Author: Markus Herrmannsdörfer
Thomas Kofler

Version: 1.0
Date: January 3, 2011
Status: Released

Technische Universität München - Fakultät für Informatik - Boltzmannstr. 3 - 85748 Garching

Weitere Produktinformationen

Erzeugung <Autor des Dokuments>

Mitwirkend

<Co-Autoren des Dokuments>

Änderungsverzeichnis

Änderung
Geänderte

Kapitel
Beschreibung der Änderung Autor Zustand

Nr. Datum Version

1 29.9.10 0.1 Alle Initiale Produkterstellung T. Kofler, M
Herrmanns-

dörfer

2 13.10.10 0.2 Alle Erweiterung H. Eckardt

3 20.12.10 0.9 Alle Verbesserung T. Kofler, M.
Herrmanns-

dörfer

Zuletzt geändert: 03.01.2011 13:23 3/18

Abstract

Since model-based development promises to increase productivity, more and more
embedded systems are developed by specifying models rather than writing code.
When an embedded system is specified on a sufficient level of detail, the code can
be automatically generated from these models. To manage the complexity, multi-
functional embedded systems are modelled on different layers of abstraction. The
functional view decomposes the embedded system into functions that define the be-
haviour observable by the user of the embedded system. The logical view decom-
poses the embedded system into components that define the platform-independent
implementation of the functions.

Even when using model-based development and abstraction layers to reduce the
complexity, multi-functional embedded systems become so complex that several de-
velopers are necessary to specify the models. To be able to reduce the time to mar-
ket, these developers have to work concurrently on the models of the embedded sys-
tem. However, concurrent modification of the models may lead to conflicts, since the
developers may have to modify the same parts of the models to fulfil their tasks. Ap-
propriate methods and techniques are thus required to either avoid conflicts at all or
to resolve them. In this paper, we discuss different methods and techniques to en-
able distributed modelling with a special focus on the connection between the func-
tional view and the logical view.

Zuletzt geändert: 03.01.2011 13:23 4/18

Inhalt

1 The Transition from the Functional to the Logical View 5
1.1 Functional View ... 5

1.2 Logical View .. 6
1.3 The Connection between the Logical and Functional View 6

2 Techniques .. 8
2.1 Parallel and Distributed Development ... 8
2.2 Developer Access to Models ... 8

2.3 Locking Strategies ... 9
2.4 Access to Models and Locking Strategies ... 10

2.5 Conflict Granularity .. 11
2.6 Change Tracking ... 12

3 Distributed Modelling in Context of the Functional and Logical View 14
3.1 Problems when working on two different layers .. 14
3.2 Distributed Development Process ... 15

4 Summary ... 17
5 References .. 18

Zuletzt geändert: 03.01.2011 13:23 5/18

1 The Transition from the Functional to the Logical View

To manage the complexity of multi-functional embedded systems, they are devel-
oped along different layers of abstraction [1]. Each abstraction layer concretizes the
models of the embedded system by adding more detail to the previous, more ab-
stract abstraction layer. To reduce the complexity of model-based development, each
layer of abstraction focuses only on one aspect of the embedded system. We distin-
guish 3 layers of abstraction [2], starting with the most abstract layer: The functional
view decomposes the embedded system according to the functions that are observ-
able by the user of the embedded system. The logical view defines the software ar-
chitecture by means of software components and maps the functions onto software
components which provide a platform-independent implementation of the embedded
system. The technical view defines the hardware architecture by means of hardware
components and maps the software components onto hardware components which
define the hardware platform of the embedded system. In this paper, we focus on the
transition from the functional to the logical view.

1.1 Functional View

Figure 1 illustrates the metamodel of the functional view as a UML class diagram.
The central construct of the functional view is a Function which defines a part of the
behaviour of the embedded system that can be observed at the system boundary.
Consequently, a function does not contain information about how the function is im-
plemented in the embedded system. Each function defines a SyntacticInterface
which consists of a number of typed Ports that are either InputPorts or OutputPorts.
However, since the functional view does not specify the internal implementation, the
functions do not define the ports themselves, but rather refer to ports of the interface
at the boundary of the embedded system. We distinguish two kinds of functions: At-
omicFunctions and CombinedFunctions. Whereas combined functions are decom-
posed of at least two sub functions, atomic functions cannot be decomposed. Atomic
functions provide a Specification to define their behaviour observed at the system
boundary. Combined functions can define Dependencies between at least two of
their sub functions. In a nutshell, atomic and combined functions allow the develop-
ers to decompose the functional view into a hierarchy of functions.

FunctionalView Function
1 *

AtomicFunction CombinedFunction

Specification

1

1..*

Dependency

1

2..* 2..*

*

SyntacticInterface

Port

InputPort OutputPort

Type
* 1

1 1

*

*

*

1

Figure 1 Metamodel of the Functional View [2]

Zuletzt geändert: 03.01.2011 13:23 6/18

1.2 Logical View

Figure 2 illustrates the metamodel of the logical view as a UML class diagram. The
central construct of the logical view is a Component which defines a part of the inter-
nal implementation of the embedded system. Whereas the behaviour defined by
functions can be underspecified, the behaviour defined by components needs to be
complete. Similar to the functional view, each component defines a SyntacticInter-
face which consists of a number of typed Ports which are either InputPorts or Out-
putPorts. However, on the logical view, each component defines its own ports and
thus the behaviour of the component is not necessarily directly observable at the sys-
tem boundary. Since ports are connected by Channels specifying flow of data, the
behaviour of the component may only be indirectly observable at the system bound-
ary. Similar to the functional view, we distinguish to kinds of components: Atomic-
Components and CompositeComponents. Whereas composite components are de-
composed of at least two sub components, atomic components cannot be decom-
posed. Atomic components provide a Specification to define their internal implemen-
tation. Composite components define a number of Channels which connect the ports
of the sub components with each other and with the ports of the composite compo-
nent. Each channel connects a source to a target port. A source port may be an input
port of the composite component or an output port of a sub component. A target port
may be an input port of a sub component or an output port of the composite compo-
nent.

ComponentLogicalView
1 *

AtomicComponent CompositeComponent

1

2..*
1 1 SyntacticInterface

Port

InputPort OutputPort

Type
* 1

1

*

Channel

1

*
*

1

*

1

Specification

1

1..*

Figure 2 Metamodel of the Logical View [2]

1.3 The Connection between the Logical and Functional View

The focus of this paper is not on the transition from the functional view to the logical
view. We assume that there is a rather complete version of both the function hierar-
chy and the component hierarchy. The task that is in the focus of this paper is to
concurrently develop the implementation of the components on the logical view. The
developers get tasks like to implement a certain feature in the logical view. Therefore,
it is important to know the connection between the functional and the logical view. As
we stated earlier, the functions from the functional view are mapped to components
from the logical view. In general, there is an m-to-n mapping between functions and
components [1]. A function can thus be mapped to several components, and a com-
ponent can be the target for several functions. As only atomic functions and compo-
nents have a specification, we focus on the mapping of atomic functions to atomic
components. The combined functions and composite components serve as an orga-
nizing structure for the behaviour of the embedded system as well as to distribute the

Zuletzt geändert: 03.01.2011 13:23 7/18

development of parts of the embedded system to different sub contractors. When a
developer is working on the implementation of a function on the logical view, he or
she may run into a conflict with another developer, since the function of the other de-
veloper may also be mapped onto the same component. In the following, we explain
the methods and techniques to avoid or resolve these conflicts. We also talk about
the need for changing the syntactical interface of components or the component hi-
erarchy in the course of implementation.

Zuletzt geändert: 03.01.2011 13:23 8/18

2 Techniques

In this section, we present a number of techniques to support parallel and distributed
development of models.

2.1 Parallel and Distributed Development

When more than one developer works on a model, this is called a parallel develop-
ment. Then problems of consistency arise which have to be resolved by synchroniza-
tion methods. These do exist in conventional software development but have to be
extended to model-based development. In this case specific problems arise, for ex-
ample because groups of changes have to be handled instead of single changes of
code lines.

Developers can work on one model at the same site (i.e. by direct server connec-
tion). When the system under development is growing, often additional teams are
deployed at other sites. Then we speak of distributed development. Typically there is
no common repository for the model in this case, the model has to be replicated to
the development sites, either in parts or as a whole. This incurs additional synchroni-
zation problems which are discussed in the next section.

2.2 Developer Access to Models

When working with models in parallel, the connection between an arbitrary client and
a server is a major subject of interest. The server which is used as an intelligent data
store (e.g. repository) contains the model in an arbitrary form of representation as a
whole. There are two major kinds of connectivity between a client and a server:
online and offline connectivity. Connectivity is an important factor when developers
are working simultaneously on the same model. Orthogonal to the connectivity are
the locking strategies; locking strategies and connectivity are working seamlessly
together. We are using the word client to denote a developer who is working on a
(possibly distributed) model. We are using the word model to denote a model or a
part of a model.

2.2.1 Online-Connectivity

Online connectivity denotes working with other clients simultaneously on one model
on a central server. When a client changes something on the model, every other cli-
ent who is working on the same model has to be notified immediately about the
change. Every change on a model is called a transaction, every transaction contains
one change on a model, due to this granularity the server is able to apply the change
to its stored central model and propagate the change to other clients without the
need for a merging strategy.

Advantages

Immediate integration of the work in progress. Every change on a model by a client
has to be immediately propagated to the server. The server stores the change and
notifies each client who is working or viewing the same model. This procedure avoids
merges to integrate changes performed on the different clients.

Zuletzt geändert: 03.01.2011 13:23 9/18

Disadvantages

Depending on a network connection. Immediate integration needs a continuous net-
work connection. If the network connection is down, there has to be a strategy to
overcome this loss. This situation leads us to typical offline situations.

Resolution of the Undo/Redo-Problem. The Undo/Redo-Problem results e.g. of the
following procedure: A client a changes a part of a model and another client b per-
forms changes based on the changes of the first clients’ (a) work. If the first client a
reverts his or her changes, what happens with the changes performed by client b?

A possible solution is to forbid the undo function. Another possible solution is a cen-
tral online transaction history which allows the clients to see all changes from all cli-
ents ordered by the execution time of the transactions. This approach allows the us-
ers to gradually revert the changes.

2.2.2 Offline-Connectivity

In case of Offline-Connectivity, a client has no continuous network connection to a
server where the whole model is stored. According to this, the client has a local copy
of the model of interest on which he or she is working offline and locally.

Advantages

Independent work. The client who is working on a model is independent of time and
location at which the client is working on the model.

Independent of a network connection. The client who is working on a model is inde-
pendent of a continuous network connection.

Changes can be reverted locally. Any changes of the model can be undone locally. If
a client changes something locally which leads to inconsistencies, it is easily possible
to revert those changes locally.

Disadvantages

Integration of the local copy. In this scenario, the already mentioned merge problem
is significant. If a client a carries out major changes (e.g. structural changes) and the
client wants to store his changes on the server, those changes have to be merged
with the model stored on the server. Concurrently, another client b could have
changed the model as well and committed it before client a on the server. The server
has to have a merge strategy to integrate the model of client a in such a way, that the
model is still consistent and both changes on the model (of client a and client b) have
to be taken into account.

2.3 Locking Strategies

When talking about distributed modelling, an important feature is the possibility to
lock development artefacts to prevent other clients to change development artefacts
(e.g. models) that are already in use. On the other side, there should also be a pos-

Zuletzt geändert: 03.01.2011 13:23 10/18

sibility to let clients work simultaneously on the same model. There are two important
locking strategies: pessimistic and optimistic locking.

2.3.1 Pessimistic Locking

Pessimistic locking denotes the locking of a development artefact by a client to pre-
vent the locked development artefact to be changed by another client. But read ac-
cess is still possible for all clients.

Advantages

No merge conflicts. This is an important advantage, because a major problem of dis-
tributed modelling is circumvented. Because only one client is able to work on a
model as long as it is locked, there is no need for a merge of models.

Disadvantages

No simultaneous work on the same model or model part is possible. As mentioned
above, only one client is able to work on a model if it is locked. If this model is an im-
portant part of the system and many clients need to make changes to that model, this
locking strategy could lead to unproductivity of the involved waiting clients and there-
fore to a major cost factor for the development company.

2.3.2 Optimistic Locking

Optimistic locking means that every client could work on the same model at the same
time.

Advantages

Simultaneous work on the same model. Optimistic locking enables simultaneous
work of different clients on the same model. When working with optimistic locking and
two or more clients are working on the same model, a merge is needed. As already
mentioned, merging models is not a simple task and should be further investi-
gated [3].

Disadvantages

Merge conflicts are possible. As mentioned above, merging models is a complicated
task. This is due to the fact that the developer who merges his or her changes with
the changes of another developer has to understand the intention behind these
changes. However, merging tools often show the changes between the two versions
of the model only as primitive changes, making it difficult for the developer to under-
stand the intention.

2.4 Access to Models and Locking Strategies

Each kind of connectivity (offline or online) can be assigned to every locking strategy
(pessimistic or optimistic). There are four possible combinations for parallel develop-
ment. In case of distributed development, online connectivity is not possible. The four
states are:

Zuletzt geändert: 03.01.2011 13:23 11/18

 Offline connectivity with pessimistic locking: This constellation can be found
when a client a is working with a local copy of model m. a locks the model m
and works hereafter offline. For any other client, a change on model m is im-
possible, as long as client a has not released the lock on model m. After client
a releases the lock, every other client is able to lock the model m.

 Online connectivity with pessimistic locking: This constellation is almost the
same as the scenario above. There is just one difference: Client a stays online
when working on model m. Every change on model m is propagated to all
other clients, but there is no possibility to change the model for any client ex-
cept client a.

 Offline connectivity with optimistic locking: In this constellation, a client a is
working on a local copy of a model m. Once the client has finished its work on
the local copy m’, he tries to merge the changed local model m’ with the model
saved on the server system m. There is still a possibility that another client b
changed the model m as well locally and produced a model m’’ which has to
be merged as well. This leads to a full set of merge problems.

 Online connectivity with optimistic locking: In this constellation a client a is
working on the model m directly on the server system. Every other client, e.g.
client b is able change the model m as well at the same time. If client a is
changing something on model m, client b or every other client who is working
on the model m has to be notified immediately. There is no merge situation in
this scenario, because every change is propagated to each client who is work-
ing on the same model.

2.5 Conflict Granularity

The conflict granularity determines the size of model parts that are atomic when it
comes to avoiding or determining conflicts. The conflict granularity serves two pur-
poses, depending on the kind of locking strategy that is used. For pessimistic locking,
it can be used to determine the size of the model part that can be locked separately
from other model parts. For optimistic locking, it can be used to determine conflicts in
a merge situation – if two clients change the same model part, then their changes
conflict with each other. The conflict granularity can be either fine-grained or coarse-
grained.

2.5.1 Fine-Grained Conflict Granularity

The conflict granularity can be very fine-grained, i.e. on the level of single model
elements. A conflict thus only occurs if two clients simultaneously change the very
same model element.

Advantages

Low probability for conflicts. Since only elements are locked and a model usually
consists of a lot of elements, the probability for conflicts is rather low.

Independent of the modelling language. Locking models on the level of elements is
independent of the modelling language and can thus be applied to any modelling
language.

Disadvantages

Zuletzt geändert: 03.01.2011 13:23 12/18

Locks for each element. A lock has to be maintained for each model element or a
conflict has to be resolved for each model element. This results in a lot of effort for
obtaining locks or resolving conflicts.

Risk of inconsistency. If there are non-local consistency rules that apply to a group of
several elements, handling conflicts on the element-level may result in inconsistent
models. If two elements are only consistent with each other in certain cases, then two
clients each of which changes one of the elements are not in conflict, but may pro-
duce an inconsistent model.

2.5.2 Coarse-Grained Conflict Granularity

The conflict granularity can be very coarse-grained, i.e. on the level of a module. A
conflict thus already occurs if two clients simultaneously perform changes on the very
same module.

Advantages

High-level locking. Fewer locks are required to lock larger parts of the model as well
as fewer merge decisions are needed to resolve conflicts. This reduces the effort for
obtaining locks or resolving conflicts.

Preservation of consistency. Inconsistencies resulting from changing elements that
are in a consistency relation with each other can be avoided by defining the modules
appropriately so that these elements are in the same module.

Disadvantages

High probability for conflicts. The probability for conflicts is rather high, since there
are usually much fewer modules than elements and changes to the same module
result in a conflict.

Dependent on the modelling language. The modules that serve as conflict granularity
have to be defined for each modelling language, thus making the coarse-grained
conflict granularity dependent of the modelling language.

2.6 Change Tracking

To determine conflicts or to merge models, the changes applied to a model need to
be tracked by the Version Control (VC) system. There are two major means to track
changes: state-based and operation-based change tracking [3].

2.6.1 State-based Change Tracking

State-based approaches only store states of a model, and thus need to derive differ-
ences by comparing two states, e.g. a version and its successor, after the changes
occurred. This activity is often referred to as differencing.

Advantages

Zuletzt geändert: 03.01.2011 13:23 13/18

Tool independence. Since the VC system is not required to be able to observe the
changes while they occur, a total separation of the modeling tools and the VC system
is possible.

Disadvantages

Computationally expensive. Due to the graph isomorphism problem, calculating the
difference is a computationally complex endeavour – especially if changes between
many states need to be retrieved, or the model is of a large size.

Loss of information. State-based approaches can neither completely and correctly
derive the exact temporal order of the changes nor are they able to derive composite
changes.

2.6.2 Operation-based Change Tracking

Operation-based approaches record the changes, while they occur, and store them
in a repository. There is no need for differencing, since the changes are recorded and
stored, and thus do not need to be derived later on.

Advantages

No computation effort. Since the changes are recorded, no computation effort is nec-
essary to derive the changes, when they are required for the different use cases.

More accurate information. Since they record the changes, operation-based ap-
proaches retain the exact temporal order of the changes as well as composite
changes. Especially information about composite changes may help to produce bet-
ter merge results.

Disadvantages

Tool dependence. Operation-based approaches need to be integrated into the tool
used for changing the models. As a consequence, they cannot be used for existing
tools which do not provide such functionality.

Zuletzt geändert: 03.01.2011 13:23 14/18

3 Distributed Modelling in Context of the Functional and
Logical View

Functions of the Functional View are refined into one or more components of the
Logical View. The Functional View should be as complete as possible before the de-
velopment team starts to work on the Logical View. Distributed modelling can then be
seen as the simultaneous work on the Functional and Logical View. We assume that
the Functional View has to be as stable as possible, before developers should work
simultaneously on the Logical View.

Working in parallel on the Logical View leads to the following problems:

a) How to distribute the models: There could be an initial component model,
which is the starting point for different developers. We assume that after the
definition of the interfaces and the interface behaviours developers can work
independently on the components.

b) How to handle changes in the Functional View: Changing something in the
Functional View leads to inconsistencies in the Logical View. Changing top-
level functions (high level of granularity) is problematic, since big parts of the
Logical View could be affected. A change process must be established for
modifying interfaces.

3.1 Problems when working on two different layers

Working on the Abstraction Layers in the context of distributed modelling means the
simultaneous work on the Functional and Logical View. The Functional View is con-
nected to the Logical View, because it is the refinement of user functions into logical
components. These layers are therefore connected.

3.1.1 The Functional and the Logical View

An initial component model could serve as starting point for distributed modelling.
The initial component model should contain interfaces and interface behaviours.
Each component is, as already mentioned, a refinement of one or more functions,
therefore the developers have to have access to the functions they should imple-
ment. A component therefore is an implementation of one or more subtrees of func-
tions. The functions have to be accessible for every developer in the project. If a
function is changed, the affected components have to be changed as well. Therefore
it is important that a technique exists to easily find the affected components. If a func-
tion is changed, it may also influence the interfaces and the interface behaviours of
components. Hence, the notification of changes in the functional view is very impor-
tant for distributed modelling based on the abstraction layers.

3.1.2 How to find an Initial Component Model

When creating an initial component model, the following influence factors have to be
taken into account:

a) Conflict Granularity Level

Zuletzt geändert: 03.01.2011 13:23 15/18

b) Access Form

c) Locking Strategy

d) Or all together

Why should those factors influence the initial component model? Depending on how
many developers are working on a model, there has to be a strategy, how to distrib-
ute the work on a model in such a way that the developers could work simultaneously
on that model.

The initial component model must at least consist of a component and its interface. If
the initial component model contains just one component, conflicts are very likely to
occur, since all developers are working on the same components. To reduce the risk
of conflicts, it is necessary to partition the component at least into as many inde-
pendent parts as there are developers. The problem, which arises here, is, it is not
easy to find those independent parts. This leads to the assumption, that the only fea-
sible way is to define an initial component model whose interfaces and whose input
and output behaviours are well defined. In that case, the result of the composition of
the distributed components is clear from the very beginning of the work.

Depending on the locking strategy, only one person might to be able to change the
model. If one person locks the initial components, it won’t be possible to change the
model for other developers. The locking strategy is as well dependent on the form of
representation of the model in the repository as it is on the possible granularity level.
It can’t be seen independent of the underlying technology, which has to support lock-
ing strategies as well as possible granularity levels. In the case that these require-
ments are in place, it is possible to distribute the initial component model to the de-
velopers without disturbing the work of each other.

3.2 Distributed Development Process

Depending on the access form, it could be very difficult to integrate the initial compo-
nent, if every developer has the same right to change parts of the initial component.
Therefore it is advisable to assign certain roles to the involved persons. The func-
tional model and initial components can be developed by some key developers or the
system/software architect himself. The developers work on the components assigned
to them. For integration (i.e. merge) of the developers’ changes into the server model
a two-level procedure can be defined. Developers work on a copy of the model.
When they have finished their task, the integrator merges the second-level model
into the main model. This is more safe because integrators know the whole system
and can assess the side effects of changes. The results of other developer groups
have to be propagated to the second level model. This is done by the integrators by
replacing the second level model by the main model at defined points of time. Thus a
process as shown in Figure 3 is determined. Critical changes of the functional model
or initial components can be included in this process in a defined way.

The detailed process how to develop/integrate changes of the model depends on the
working style which is more or less prescribed by the modelling tool. Some tools al-
low to separate the abstraction layers in different sub-models which are more or less
independent from one another. This supports avoidance of conflicts. Other tools al-

Zuletzt geändert: 03.01.2011 13:23 16/18

low only for one single model per “project” or repository. These tools are less suited
for large-scale development of model-based software.

Figure 3 Distributed development process

Main model

2nd level
model 1

2nd level
model 2

Integrate Rebase/
 Start phase 2

time

Start phase 1

Zuletzt geändert: 03.01.2011 13:23 17/18

4 Summary

To manage their complexity, systems are implemented using different layers of ab-
straction. First, the user functions are defined. Then, the user functions are imple-
mented by software components. Finally, these software components are mapped
onto hardware components. User functions are often implemented simultaneously by
different developers. Since several functions may be mapped onto the same software
component, conflicts may arise between the work of the different developers. To
avoid such conflicts, we presented a number of techniques for parallel and distributed
modeling. We have analyzed these techniques in the context of the transition from
user functions to software components.

Zuletzt geändert: 03.01.2011 13:23 18/18

5 References

[1] Daniel Ratiu, Wolfgang Schwitzer, Judith Thyssen. A System of Abstraction
Layers for the Seamless Development of Embedded Software Systems. TUM-
I0928. 2009

[2] Alexander Harhurin, Florian Hölzl, Thomas Kofler. SPES Metamodel. SPES
Deliverable D1.2.B-6. 2010

[3] Maximilian Koegel, Helmut Naughton, Jonas Helming, Markus Herrmannsdo-
erfer. Collaborative Model Merging. ONWARD! '10: ACM Conference on New
Ideas in Programming and Reflections on Software. 2010

[4] Maximilian Koegel, Markus Herrmannsdoerfer, Yang Li, Jonas Helming, Joern
David. Comparing State- and Operation-based Change Tracking on Models.
EDOC '10: 14th IEEE International EDOC Conference. 2010

http://edoc2010.inf.ufes.br/

