
Modulare Werkzeugarchitektur

A critical discussion on

Domain-Specific Languages

Disclaimer

• DSLs are a topic that is currently finding its research

community

• There are only very few scientifically consolidated

insights

• However, may publications are still on a „position paper“

level, filled with many unproven claims

3

Agenda

• Introduction to DSLs

• Language Engineering vs. Program Engineering

• Language and Tool Architecture

Programming Languages

“Programming languages are a programmer's most basic

tools ” Tony Hoare

Classification-Dimensions:

• Paradigm (procedural, functional, object-oriented,…)

• Textual vs. graphical

• Imperative vs. deklarative

• Use Case: Embedded programming, Business

Information Systems, …

5

Definitions

“A DSL is a programming language or executable

specification language that offers, through appropriate

notations and abstractions, expressive power focused

on, and usually restricted to, a particular problem

domain.“*

Metaphor:

• General-purpose Programming Language = Craftman‘s

toolbox (usable for many problems but not efficient).

• DSL = Factory (only usable for a very specific product

but with high efficiency).

6

*Arie van Deursen, Paul Klint, Joost Visser

Examples (1): „Classic DSLs“

Textual

• Lex (RegExps), Yacc (BNF)

• SQL

• HTML, MathML, VRML, SGML, ...

• Teapot: Cache-Coherence Protocols.

• Dot:

7

digraph Cycle {

 a -> b

 b -> c

 c -> a

}

Examples (2): More specific domains

Graphical

• GUI Builder

• Biztalk Orchestration Designer

• CPL: Internet Telephony Services*

8

*Internet Engineering Task Force

Old hat?

DSLs are (almost) as old as computer science itself

• (first so called DSL: „Automatically Programmed Tools“ von 1959.)

Why are they now of current interest?

• Hope to repeat the success of general-purpose programming

languages:

 „Surely the most powerful stroke for software productivity, reliability, and

simplicity has been the progressive use of high-level languages for

programming. Most observers credit an increase in productivity with at least a

factor of five.“ *

• Increasing abstraction forces a reduction of expressiveness =>

DSL

9

*Fred Brooks, 1975/1995, „No Silver Bullet“

Claimed Advantages

• Domain-specific notation

 => Self-documenting

 => Are understood by domain-experts (without

programming skills)

• High level-of-abstraction

 => Smaller „programs“

 => Less bugs (because of smaller programs)

 => Increased productivity

10

Claimed Advantages (2)

• Limited Expressiveness

 => Better possibilities for analyses, verification,

optimization, …

• Reuse of domain-knowledge

• Do not have to be executable

 => You do not notice defects ;)

 „Pictures, as opposed to programs, don‘t crash“*

11

*David Garlan

Claimed Disadvantages (1): Usage

• For many domains

– No DSL available

– If so, then often very proprietary ones

– (Almost) no experiences with DSLs

• Users must learn a new language (but: they must learn

domain-knowledge anyway)

• Many fundamental questions remain still unanswered

• Potentially lower performance than manually crafted

(and optimized) solution

12

Claimed Disadvantages (2): Construction

• Costs for design, implementation and maintenance of a

DSL

• Domain-knowledge as well as compiler-construction

skills necessary

• Difficulties of finding the „right scope“

• Maintenance of DSLs not yet fully understood

13

Reduction of „Accidential Complexity“

Classification of the difficulties during software design:*

Essential: Data structures, relationships between entities,

algorithms, functions

 = Problem-inherent Complexity

Accidential: historical, artificial, not problem-inherent

complexity.

 = „Artificial Complexity“

Example: GUI Builder, Parser Generator

14

*Fred Brooks, 1975/1995, „No Silver Bullet“

Avoidance of redundancy

In most systems you find

Domain concepts (e.g. customer) implemented at different

places in the solution. (GUI, BL, DB)

Update-anomaly: A chance in the domain concept

customer forces many changes in the solution.

DSL at the „right“ level of abstraction helps to avoid

these kind of redundancy

Examples: CDL, „Application Generators“

15

Analyzability by reducing expressiveness

Approach:

• Reduce the contructs of the language and their

expressiveness to gain better analyzability.

Examples:

• Protocol verification

• ConQAT: Load Time Type Checking

• Giotto

16

Isolation of Variability

Approach:

• Bundling of similar information with high expected

change rate

Examples:

• CSS: Layout informationen in a central file.

• JBoss Rules: Business Logic in terms of rules. This

does not avoid redundancy. But chances of the

business logic can be done locally at one point.

17

Current Approaches

• Generative Programming (Czarnecki, Eisenecker)

• Domain Specific Modeling (Tolvanen, MetaCase)

• Model Driven Software Development (Völter, oAW)

• Model Integrated Computing (Vanderbuilt, GEM)

• Language Oriented Programming (JetBrains, MPS)

• Software Factories (Microsoft, DSL Tools)

• Model Driven Architecture

• Software Productlines

18

Open Questions

• In which cases makes the application of a DSL

economical sense, in which cases is GPPL cheaper /

more efficient?

• Which methods should I use to develop a DSL?

• What is a good DSL?

• How can we maintain a DSL efficiently? (Coupled

evolution of metamodel, model and tools?)

• Which „Technical Space“ fits best for which scenario?

(Grammar, Metamodel, XML-Schema, …)

19

Language Engineering

vs.

Program Engineering

Language Engineering

• State-of-the-art

– Syntax definition using grammars/data models and constraints

– Definition of „translational semantics“

• Challenges:

– Diverse metamodeling dialects, incompatibility

– Few approaches to build components/modules, usually huge

flat metamodels

– Evolution problem of models/programs if the language changes

– High tool development efforts: editors, generators, but also

debugger/simulator, profiler, …

– Diff/Merge is usually cumbersome when using graphical

languages

21

Metamodeling

22

3-layered Metamodel-Architecture (MOF)

A Comparison …

23

Some Discussion …

Language Engineering Program Engineering

Elimination of

redundancy

DSLs can be created to

avoid redundancy

Good design with low

redundancy often

possible, in some cases

repetitive code inevitable

Effort Development and

maintenance of several

tools, risk of over

engineering

Focus efforts on the

product, not on the tools

to develop the product

Memory Footprint of

executables

Good generators enable

generating small code

bases with low memory

footprint (unfortunately

many do not)

Libraries often come up

with much functionality

that is not needed for a

specific application

Product Lines Describe variability in the

language, generate only

the code needed for the

individual product

Provide the full

functionality and

dynamically configure

the system at start-up.

24

Language Maintenance

• DSL: Grammar, Metamodel

• Tool: Generators, Editors

• Word: Models/Programs

25

Language and Tool Design

UML Profiles

What are UML Profiles?

• Extension of the UML

Standard diagrams with

custom entities using

stereotypes

• Starting point is a

package declaration

• Definition of metaclasses

(concepts/entities)

optional with custom

symbols/icons

27

Syntax: UML Profiles vs. Metamodeling

• UML profiles are more lightweighted than metamodeling

• Profiles do not define contraints on the syntax

– Diagrams possible that are not even correct on a syntactic level

• UML diagrams may be a well-known notation

– Stereotypes may give them completely different semantics

• UML is a standard

– Without defined semantics

• There are standard tools for UML

– There is also tooling for Metamodels (e.g. metamodels)

28

Staged Generation/Model Transformation

29

Tool Integration: e.g. Automotive Tooling today

30

Integration of languages

State-of-the-art:

• Integration using the target programming language

(using glue code)

• Integration using one language as Strings in another

language (e.g. web programming)

• Extendable Compilers (z.B. Stratego/SDF, MetaBorg,

Silver, …) → only academic prototypes

31

Component-based Language Engineering

32

EMF, GEF, …

Generic Toolingframework

Component

Network

Automaton

Specification

Hardware

Topology
Deployment Typesystem

Editors

Metamodel

Generators

…

…

Example: Tool-Architecture of AutoFOCUS 3

http://af3.in.tum.de/images/e/e4/ExpandedDictionary.png
http://af3.in.tum.de/index.php/Image:IntListEvaluation.png
http://af3.in.tum.de/index.php/Image:Getting_Started_Tutorial_SSD_View.png
http://af3.in.tum.de/index.php/Image:Getting_Started_Tutorial_Root_State.png

Component-based Language Engineering

Four Levels of Integration

– Abstract Syntax: In-Memory representation of the

words
• Metamodell, Grammar

– Concrete Syntax: Human read-/editable

representation
• Diagrams/graphical Editors, Text/Text Editors

– Transformation: Translation to other artifacts
• Template-based (text generation), Model-to-Model transformation

– Semantics: Common definition of the meaning of the

concepts
• Automatons, Focus, …

33

Language Components: Abstract Syntax

Use inheritance to extend

abstract concepts from

another component

34

Language Components: Concrete Syntax

• Provide interfaces (extension points) to integrate the

concepts of other languages

Specific

peripherals

implement the

interfaces needed

by ECUs

ECUs provide an

interface to allow

adding peripherals

35

Language Components: Transformation

• Define only the code-

representation of the

concepts of the lang.

component (a good code-

level architecture needed!)

• Define interfaces (extension

points) where other

information is needed

36

Modular Code-Generation II

37

Potentiometer-Generator

Servo-Generator

MPC5544-OSEK-Generator

Automaton-Generator

State Automata C-Code

Middleware Code,
Configuration Files and
Tracing-Information

Catalogs and other
Meta-Information

Makefiles, Rollout- and
Flash-Automation Scripts

Code-Generation Beyond C

38

Many important artifacts can be generated:

Tool Dev: Lessons Learned

• Trend to declarative descriptions, e.g.

– GMF for Editors

– Xpand for Generator-Templates

– oAWcheck for constraint checking

– xTend for model transformation

– …

→ Problem: Huge mixture of languages!

– Learning efforts

– Composability problematic

– Often too weak expressiveness (escape mechanisms)

→ Not every language that seems to be elegant is an enrichment

for the project

39

Tool Dev: Lessons Learned

• Generators need a good understanding of the target

code architecture

• Build Generators in a bottom-up manner

1. Write 3-5 instances of the program

2. Factor out their commonalities/redundancies on the code

level

3. Build the generator templates

40

Language Design: Lessons Learned

• Trade-off: The more abstract the concepts,

– the smaller the language

– the more complex the generator

• Separate orthogonal views

41

Literature

• „Domain Specific Languages: An Annotated

Bibliography“: A.van Deursen, P. Klint, J. Visser, 2000

• „When and How to Develop Domain-Specific

Languages?“: M. Mernik, J. Heering, A. Sloane, 2003

• Overview of Generative Software Development, C.

Czarnecki, 2005

• „Language Workbenches – The Killer-App for Domain

Specific Languages?“, Martin Fowler, 2005

42
42

