
Specification of an Architecture
Meta-Model∗

Raphael Weber, Eike Thaden,
Philipp Reinkemeier, Andreas Baumgart

Tuesday 31st January, 2012

∗The research reported in this document has mostly been performed in the project SPES2020
(www.spes2020.de) which is funded by the Ministry of Science and Culture. Also, the
projects CESAR (www.cesarproject.eu) and SPEEDS (www.speeds.eu.com) had major in-
fluences on the results of this work.

Specification of an Architecture Meta-Model

c©2012 OFFIS.
All rights reserved. Copyright Notice: This material is presented to ensure timely
dissemination of scholarly and technical work. Copyright and all rights therein are
retained by authors or by other copyright holders. All persons copying this information
are expected to adhere to the terms and constraints invoked by each author’s copyright.
In most cases, these works may not be reposted without the explicit permission of the
copyright holder.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Purpose . 1
1.3 Scope . 1

1.3.1 Motivation . 2
1.3.2 Meta-Model Requirements 2
1.3.3 Integration Concepts . 4

1.4 Differences between the Meta-Model and the Profile 4
1.5 How to read this Document . 5
1.6 Example Description . 5

2 Specification of the SPES Meta-Model 7
2.1 Component Meta-Model . 8

2.1.1 Model Elements . 8
2.1.2 Namespaces . 9
2.1.3 Packages . 10
2.1.4 System Design . 12
2.1.5 Types . 17
2.1.6 Constants . 19
2.1.7 Textual Elements . 19
2.1.8 Values . 20
2.1.9 Navigable Elements . 22
2.1.10 Templates . 23
2.1.11 Multiplicities . 27
2.1.12 Rich Components . 28
2.1.13 RichComponents and Parts 33
2.1.14 Componenets and Ports . 33
2.1.15 Components and Attributes 34
2.1.16 Components and Interconnections 35
2.1.17 Port Specifications . 40
2.1.18 Elaboration of Architectures 45
2.1.19 Domain-, User-, and Tool-specific Extensions 49

2.2 Component Behavior Meta-Model 52
2.2.1 Value Functions and Calls 52
2.2.2 Component Initialization . 54

iii

2.2.3 Service Implementations . 55
2.2.4 Behavior Definitions . 56
2.2.5 Behavior Implementations 57
2.2.6 Behavior Blocks . 58
2.2.7 Pins . 65
2.2.8 Behavior Links . 67
2.2.9 Component Mapping . 73

2.3 Requirements Meta-Model . 83
2.3.1 Requirements . 83
2.3.2 Requirements Traceability 88

2.4 Safety Aspects of the Meta–Model 91
2.4.1 Verification and Validation 92
2.4.2 Safety Extension . 99

2.5 Data Type Specification . 103
2.5.1 Data Types . 103

2.6 Technical Elements . 109
2.6.1 Hardware Elements . 109
2.6.2 Resource Modeling and Scheduling 117

3 Conclusion 131

1 Introduction

This document specifies the SPES Meta-Model (SPESMM) including the Heteroge-
neous Rich Component (HRC) basis and its extensions.

1.1 Overview

The document starts with this introduction in which the purpose and the scope will
be presented. The scope motivates the need for various modeling concepts based on
requirements on the meta-model. It shows how existing assets meet these requirements
and how modeling concepts and different meta-models can be integrated. The second
chapter provides a specification of the SPES Meta-Model.

1.2 Purpose

The purpose of this document is to motivate the need for a new meta-model based on
HRC from the SPEEDS project [Pro07] and to specify the SPES Meta-Model.

1.3 Scope

In the context of the SPES2020 project a so called Reference Architecture (for better
understandability and correctness we call it a meta-model) is to be specified. Tools
and services being connected to this meta-model are able to interoperate with each
other. This requires means for data exchange and common interfaces satisfied by the
meta-model.

The SPES Meta-Model which is specified in this document covers the need for a
System Meta-Model in SPES2020. In the following we show the coverage of the SPES
Meta-Model and provide integration concepts. The formal description of a modeling
theory (ZP-AP1), the description of a model-based requirements engineering approach
(ZP-AP2), the specification of efficient safety analysis methods (ZP-AP4), or the de-
scription of the realization of multi-core realtime systems including methods to analyse
them (ZP-AP5) are not scope of this document.

1/135

Specification of an Architecture Meta-Model

1.3.1 Motivation

The SPESMM provides interoperability between tools and services. Many tools have
internal meta-models or provide connectivity to open meta-models such as MARTE
[Obj08b] or SysML [Obj08a]. Other tools or services might provide support for such
meta-models but this is not the general case. When connecting tools and services with
a heterogeneous set of meta-models, there is a strong need for data exchange. Point-to-
point connections between specific tools are always possible and have to be regarded
as well. But the support of a new tool with a foreign meta-model requires providing
data exchange solutions to all tools which shall communicate with the tool. In cases
where the full semantics of the model have to be supported and specific artifacts have
to be accessed this is useful.

Generally, tools do not know all foreign meta-model concepts. So an interface to all
kinds of models would either be only structural without semantics or has to provide
all possible semantics which is difficult to capture and such a “world interface” would
not be useful. In many cases it is only relevant to identify more abstract concepts and
artifacts with generic semantics i. e. when browsing models or for common analysis
and simulation techniques. For this purpose the SPES Meta-Model will provide a
technique to access common concepts, artifacts and relationships in models of meta-
models. Such meta-models are integrated by performing a tailoring process in which
meta-model artifacts and relationships are mapped to the concepts of the SPES Meta-
Model. The SPES Meta-Model provides core structure and semantics. Models can
therefore be completely stored in the SPESMM for full model exchange and have
furthermore a generic interface as defined by the SPES Meta-Model.

In order to generally support a large number of modeling tools the SPES meta-
model is also presented as a UML Profile, relying on UML models extended through
stereotypes. Consequently, the profile approach is not as flexible as the meta-model,
but we were able to identify missing UML concepts present in the SPESMM and to
integrate them into the profile. Thus, in some SPESMM descriptions there are hints as
to how the specific meta-model artifact is represented in the profile.

1.3.2 Meta-Model Requirements

Recent meta-model approaches like EAST-ADL2 [ATE08], AADL [FGH06], SysML
[Obj08a] or HRC [JMM08] contain structural features such as components, ports, and
connectors. In conjunction with the requirements from Deliverable D3.1.A [WTR09]
we deduced general meta-model requirements for the SPESMM. In the following we
provide a concept of common structural artifact kinds and a description of the compo-
sition concepts.

The SPESMM will enable heterogeneous component design. Each of the mentioned
meta-models contains artifacts which resemble components. The kind of a component
thereby depends on the abstraction level and on the subject architecture in which the
component shall be placed. For instance, on the one hand a functional draft can con-

2/135

Specification of an Architecture Meta-Model

sist of a set of abstract black boxes without internal behavior, on the other hand a
concrete design can contain software functions or hardware modules with a behavioral
description.

The SPESMM, when classified into the schemes of different compositions (see
[Ode98]) resembles the component-integral object and the member-bunch composi-
tion. The latter allows differing configurations — this is true for higher abstraction
levels of the SPESMM, since there is no information about the specific place of a
component. At the lower abstraction levels this information is added and the composi-
tion concept reflects a component-integral object composition, containing more details
on the configuration of components.

As depicted in Figure 1.1 components can have ports as a communication means
which contain data or which provide respectively invoked services. A port must have
a data type. The applicable data type depends on the component which the port be-
longs to. In general, functional components exchange data using higher data types like
numbers, strings or complex compound objects. Furthermore, they can communicate
using services for function calls. Lower level components might talk about bit arrays
and electrical components expect certain voltages on the lines of their interfaces. In
order to enable communication between two components there has to be a connec-
tion between the ports of a component. Components may contain attributes as a port
for internal use. All ports can be typed. Furthermore, a port has a name and can be
referenced. The internal behavior of a component can be described by a behavioral
description from which the ports of the respective component can be referenced.

Component 2Connection 1

Connection 2

Component 1

P
or

t 3
P

or
t 4

Part 1

Data Type 1

Port 2

Service 1

P
or

t 1

Behavior

Part 2

Port 3

Component 3

type

type
type type

Data Type 2

type

Port 1

type

type

provides invokes

P
or

t 1
P

or
t 2

type

Figure 1.1: Concept of components and ports.

Components can contain parts typed by other components, enabling decomposition.

3/135

Specification of an Architecture Meta-Model

It is often useful to instantiate one component several times. For instance, a component
design contains two actuators of the same kind. The respective component is defined
once and instantiated twice. This provides high reuse capabilities.

1.3.3 Integration Concepts

The SPES Meta-Model will consist of a common concept core meta-model, eventual
general core extensions as well as domain specific extensions.

The SPESMM Meta-Model contains common modeling concepts which are gener-
ally needed such as component based design, data types, expressions, requirements
and tracebility. These concepts are based on HRC, EAST-ADL2, and MARTE.

Domain specific meta-models like EAST-ADL2 can be tailored to extend the
SPESMM core meta-model. This allows domain specific models as well as a gen-
eral interface to such models based on the SPES Meta-Model and therefore enables
model-based tool interoperability.

For the purpose of clear packaging meachanisms meta-models which are tailored for
the SPES Meta-Model shall only reference own classes, classes of parallel respectively
own sub packages or classes which belong to more general concepts like the common
core. Thus classes of a generalized meta-model package shall not reference classes of
an extension package because this would make the extension package belong to the
generalized package.

In order to integrate a foreign meta-model into the SPES artifacts and relationships
which are related to common concepts of the SPES core meta-model have to be identi-
fied. Based on such a concept identification the respective meta-model can be tailored
to extend the common concepts.

1.4 Differences between the Meta-Model and the
Profile

Since the SPESMM is a meta-model it relies on its own semantics. Therefore a con-
version of the meta-model to a profile is not an easy step since UML already provides
some semantics and structures which are not always compatible with the SPESMM
semantics. A second issue is the absence of a decompositional context reference.

UML only allows for a component to be decomposed one level deeper. So if a
modeler talks about an instance within a type (part of a class) he can not know how
many instances of the described type itself exist. In a deep decomposition hierarchy
the user has to be able to identify the context in which the instance is used. Therefore
we introduced part and port references for the mapping relation, see Section 2.2.9 for
more details on the mapping relation. Since the profile would hardly be usable with
such a deep context reference decomposition we “flattened” these context references,
so they now are tags in the mapping stereotype.

4/135

Specification of an Architecture Meta-Model

Expressions in the meta-model are a powerful tool to specify all kinds of side-effect-
free constraints or values. To make it usable in a profile for UML we decided to convert
all expression associations into String attributes. These String attributes can later be
parsed to expressions for further analysis.

1.5 How to read this Document

This section provides a short overview about how to read the following sections. These
will show concepts of the SPES Meta-Model, the involved modeling artifacts and their
relationships. Modeling artifacts will be denoted by meta-classes which are shown
in class diagrams. Each meta-class which belongs to a respective context will have
a description and a specification of its relationship. The description is an informal
text, the relationship specification is expressed in formatted lists as listed below. Meta-
classes can be concrete or abstract. Abstract meta-classes are denoted by an appended
{abstract}. Meta-classes can have generalizations. Attributes have a name, a type, a
multiplicity and a description. Aggregations mean that an element of a target meta-
class belongs to the aggregating meta-class. Associations only mark a reference. Ag-
gregations and associations have a name, a target, a multiplicity and a description.
Meta-classes may have operations where the respective name is marked by additional
brackets (). An operation has a return type and an operation which may be specified in
OCL. Furthermore, there can be a numbered list of constraints on a meta-class where
every constraint has a description which can additionally be specified in OCL. Enu-
merations are marked with an additional {Enumeration} and have a list of elements
(literals) which are described respectively.

1.6 Example Description

SPESMetaClass/SPESMetaClass {abstract}/SPESMEnumeration
{Enumeration}

Description of the SPESMetaClass/SPESEnumeration.

Generalizations: SPESSuperMetaClass

Attributes

• attribute : Type [m..n] Attribute description.

Aggregations

• aggregation : Type [m..n] Aggregation description.

5/135

Specification of an Architecture Meta-Model

Associations

• association : Type [m..n] Association description.

EnumerationLiterals

enumLiteral Enumeration literal description

Operations

• operation(ParameterType(s)): ReturnType Description of the operation.

. . .
context SomeContext

def: involves(someParameter: ParameterType): ReturnType
. . .

Constraints SPESMetaClasses are subject to the following constraints:

1. Constraint description:

. . .
context SPESMetaClass inv someInv:

self .value.type().conformsTo(self .target.type())
. . .

6/135

2 Specification of the SPES
Meta-Model

In this chapter concepts of the current SPES Meta-Model are described. As already
mentioned before the SPES Meta-Model was created based on an integration of EAST-
ADL2 from the ATESST project and HRC from the SPEEDS project. Since EAST-
ADL2 is a language which is intended for the usage in the development of embedded
electronic systems in the automotive domain several terms are related to cars (such as
vehicle). On the contrary HRC provides a more general and formal means to describe
component based design. This SPES Meta-Model is the result of an approach to unite
domain specific terms and concepts of EAST-ADL2 with general formal mechanisms
of HRC.

The SPES core meta-model provides a general modeling concept for embedded sys-
tem design. Figure 2.1 shows an overview on the logical sections of the meta-model.
These logical sections are “Components” to cover component based design, “Require-
ments” to cover requirements engineering and traceability as well as “Verifciation and
Validation” to cover analysis techniques. They are supported by the general concept
of “System Modeling” which covers the engineering process.

SPES Meta-Model

Core

System Model

Components

Requirements

Verification

and Validation

Figure 2.1: General overview over the SPESMM packages.

The core packages (SPESMM core) allow rich component models in conjunction
with requirement descriptions, traceability links and the specification of verification
and validation test cases. The core meta-model provides an abstraction of domain
specific meta-models. It can be used as an exchange format for general analysis tech-
niques and provides a common concept interface on various domain specific modeling

7/135

Specification of an Architecture Meta-Model

approaches. The specification of abstraction levels, perspectives, and aspects (also
called viewpoints) is also possible with the SPESMM core.

2.1 Component Meta-Model

In this section a modeling concept for rich component design is presented. The ap-
proach is based on the HRC meta-model.

2.1.1 Model Elements

Model elements are elements which have specific semantics for modelling such as
components, requirements, trace links, attributes etc. As depicted in Figure 2.2 they
can be extended by specific domain-, user-, or tool-specific extension types and by
respective extension attribute values.

ElementExtensionAttributeValue ExtensionType

OpaqueExtensionElementNamedElement

+ comment :String [0..*]

+ name :String

+ /qualifiedName :String {readOnly}

+extensionType

0..*

+extensionAttributeValue

0..*

Figure 2.2: Elements.

2.1.1.1 Element {abstract}

An element is a model entity with defined semantics such as components, require-
ments, ports, attributes or trace links. An element can be extended by extension types.
These define specific semantics und structure of an element. The attributes of an ex-
tension type can be used for the element by defining extension attribute values.

Element is an abstract meta-class. Its sub-classes define concrete semantics. Exten-
sion types define specific semantics for an element. Extension attribute values that are
owned by an element must be instances of attributes that belong to referenced exten-
sion types of an element. There are two sub-classes of Element, namely NamedEle-
ment and OpaqueExtensionElement.

Aggregations

• extensionAttributeValue : ExtensionAttributeValue [0..*] A set of attribute
values coming with domain-, user-, or tool-specific extensions.

8/135

Specification of an Architecture Meta-Model

Associations

• extensionType : ExtensionType [0..*] A set of domain-, user-, or tool-specific
extension types which define additional interpretation of the model element.

Constraints Elements are subject to the following constraints:

1. Each ExtensionAttributeValue of an Element must reference an attribute of an
ExtensionType that is referenced by the Element as extension type.

2.1.2 Namespaces

A name-space is a region or context within a model wherein a certain set of elements
may be identified by their names; that is to say, their names serve as identifiers as
depicted in Figure 2.3. To this end the elements in question must each have a name
attribute with an appropriate type (String) and these names must be guaranteed to
be unique within the region or context of the name-space. No explicit meta-class is
provided for name-spaces. Whenever a named element is owned by some other model
element, the requirement for uniqueness of names in the context of the owner will be
expressed by a constraint associated with the owning meta-class.

NamedElement

+ comment :String [0..*]

+ name :String

+ /qualifiedName :String {readOnly}

DeclarationZoneReusableElement

NavigableFeature Interconnection

InteractionPoint

VVProcedure

+ specification :String [0..1]

+ specificationType :String [0..1]

ExtensionAttribute

Figure 2.3: Named elements.

2.1.2.1 NamedElement {abstract}

Meta-class NamedElement defines the ability of a model element to have a name for
the purpose of serving as its identifier. Moreover, a named element may also own a

9/135

Specification of an Architecture Meta-Model

comment string to illustrate briefly for example its purpose, rationale, speciality, etc.
The name of a named element is mandatory and required not to be an empty string.
This reflects the intention that named elements be uniquely identifiable by their names
within the context of their owning name spaces.

Generalizations: Element

Attributes

• comment : String [0..1] An optional comment.

• name : String [1] The name of an element.

• qualifiedName : String [1] A qualified name derived from the hierarchical
structure of named elements.

Constraints Named elements are subject to the following constraints:

1. The name must not be an empty string:

context NamedElement inv NamesNotEmpty : self .name <> ””

2.1.3 Packages

As depicted in Figure 2.4 this section deals with the modularization and coarse-grained
structure of HRC models. HRC models are divided into declaration zones that contain
certain model elements. The model elements that are contained in a declaration zone
are called reusable elements because they can be used in different contexts. Reusable
elements are data types, functions, HRC blocks, port specifications, and rich compo-
nents.

DeclarationZone ReusableElement

Package

SystemModel AbstractionLev el Perspectiv e

+ kind: PerspectiveKind+abstractionLevel

0..* +perspective

0..*

+successor 0..1

+topLevel

1

+ownedPerspective

0..*+owner

0..1
+abstractionLevel

1..*+owner

0..1

+declarationZone

0..1

+declared

0..*

+owner

0..1

+subPackage

0..*

Figure 2.4: Packages.

10/135

Specification of an Architecture Meta-Model

2.1.3.1 DeclarationZone {abstract}

A declaration zone is a named modularization unit that contains a set of HRC reusable
elements. In addition, a declaration zone can be further divided into packages. Decla-
rationZone is an abstract meta-class that has one subclass: Package.

A declaration zone is either a package or a system. A system is a top-level declara-
tion zone that designates a rich component as its root. A package is a declaration zone
that can be contained by another declaration zone (package or system). Packages thus
allow to structure HRC models as trees.

The top-level element of an HRC model is a either a system or a package. In the
latter case, the HRC model is just a set of reusable elements: it is thus a library.

This part of the meta-model does not explicitly deal with the physical partitioning
of models into multiple files. As this is a purely technical (non-conceptual) issue, it is
unclear to us whether it should have an impact on the meta-model.

Generalizations: NamedElement

Aggregations

• declared : ReusableElement [0..*] The set of reusable elements contained by
the declaration zone.

• subPackage : Package [0..*] The set of sub-packages contained by the decla-
ration zone.

2.1.3.2 Package

A package is a declaration zone that can be contained in another declaration zone. This
meta-class allows to structure HRC models as trees. When not contained by another
declaration zone, a package is the top-level element of its HRC model.

Generalizations: DeclarationZone

Associations

• owner : DeclarationZone [0..1] The declaration zone that owns the package.

2.1.3.3 ReusableElement {abstract}

A reusable element is an element that has a name and can be directly owned by a
declaration zone. A reusable element is reusable in the sense that it can be used in
different contexts. In addition, because of the ownership by DeclarationZone, reusable
elements are the constituents of HRC libraries (see Package).

11/135

Specification of an Architecture Meta-Model

The subclasses of ReusableElement are BehaviorBlock, VVTarget, Interconnection-
Specification, PortSpecification, ValueFunction, FailureScope, Dimension, Unit, Sys-
temArtefact, DataType, Constant, MappingBlock, Aspect, VVCategory, Entail, Map-
ping, Stakeholder, .Decompose, InformalAssertion, OperationalBlock, Derive, Satisfy
and Refine.

Generalizations: NamedElement

Associations

• declarationZone : DeclarationZone [0..1] The declaration zone that owns the
reusable element.

2.1.4 System Design

An embedded system is modeled along the development process. Such a development
process has several steps. As depicted in Figure 2.5 a system model covering such
a process therefore has several abstraction levels. In one abstraction level different
kinds of model compositions can be created or regarded coming from other abstraction
levels. Such model compositions belong to different perspectives such as operational,
functional, logical, technical and geometrical. Models are created based on system
artifacts such as requirements, rich components and VVCases. In one perspective there
is one root system artifact denoting the entry element of the model of the perspective.
For the model in one perspective several aspects can be regarded which refer to specific
system artifacts.

SystemModel

AbstractionLev el Perspectiv e

+ kind: PerspectiveKind

SystemArtefact Aspect

Perspectiv eKind

 operational
 functional
 logical
 technical
 geometric

DeclarationZone

Package

ReusableElement

AbstractionLev elCategory

+root 0..1

+owner

0..1

+subPackage
0..*

+declarationZone

0..1

+declared

0..*

+abstractionLevel

1..*

+owner 0..1

+ownedPerspective

0..*+owner

0..1

+topLevel1

+successor 0..1

+category 0..1

+abstractionLevel

0..* +perspective

0..*

+aspect

0..*

Figure 2.5: System design elements.

The evolution of an embedded system development process and related models is
illustrated in Figure 2.6. The real system with the system under design is projected to

12/135

Specification of an Architecture Meta-Model

a model world. In this model world different kinds of models are created and refined
until finally the system can be built in the real world. These models evolve along three
axes covering the abstraction levels of the process steps and the viewpoints. As a first
axis there is an ordered set of abstraction levels. These abstraction levels generally
start with the definition of very coarse models and end with very low level and detailed
models. A transition from one abstraction level to another level is always a refinement
of models. Models defined on a lower level of abstraction realize models of the next
higher abstraction level. Several kinds of composed models can be regarded on one
abstraction level which cover different perpectives of the system as a second axis of
the model evolution. The models of the different perspectives are related to each other
via allocation links. Furthermore, within the models several non-functional aspects
are regarded which are covered by different artifacts of the models. The coverage of
aspects in the models therefore provides a third axis of model evolution.

2. Dimension

Perspectives

1. Dimension

Abstraction Levels

Safety

Real-

Time
Interfaces

Real World

Model World

S

Projection

Viewpoint

X

S’

(Partial)

Generation

3. Dimension

Viewpoints

Figure 2.6: Embedded system design model evolution.

The models that are created during such a development process can be covered by a
SPESMM system model. The presence of requirements and VV cases is considered the
whole time. They can be introduced in any step of the process and therefore be related

13/135

Specification of an Architecture Meta-Model

to the structural elements where they are needed by using requirements traceability
means as described in Section 2.3. The SPESMM methodology paper (to appear)
gives a detailed description how to use abstraction levels, perspectives, and aspects in
a system model.

2.1.4.1 SystemModel

The System Model of the SPESMM aims to provide the same features as the System
Package in EAST-ADL2. It is supposed to be a template for how engineering infor-
mation is organized and represented. The organization thereby refers to the presence
of different abstraction layers and system aspects. While the number and names of
abstraction layers of EAST-ADL2 are fixed, SPESMM provides a variable number of
abstraction layers which can have arbitrary names. The system model only referes to
the topmost abstraction level to start with.

Through the abstraction level names and the artifacts associated with each abstrac-
tion level the system architect can distinguish concerns and relevance for stakeholders.
A system model is a package and can therefore be arbitrarily structured by other sub-
packages and contain reusable elements. As a package a system model can belong to
another package if there shall be a hierarchy of system models available.

Generalizations: Package

Aggregations

• abstractionLevel : AbstractionLevel [1..*] The set of abstraction levels in the
system development process.

Associations

• topLevel : AbstractionLevel [1] The highest level of abstraction of the devel-
opment process. Serves as an entry point for the process.

2.1.4.2 AbstractionLevel

Related to the ISO/IEC 42010 IEEE Std 1471-2000 Standard for Systems and Soft-
ware Engineering – Recommended Practice for Architectural Description of Software-
Intensive Systems [ISO07] an abstraction layer is a granularity/detail viewpoint con-
straining a component view based on level of detail or granularity criteria and regarding
descriptive means. Abstraction levels are ordered, ranging from simplified to very de-
tailed. At least one level of abstraction contributes to a design process phase. Models
can be created in one abstraction level but also be referenced from different abstrac-
tion levels. Such models are part of different perspectives which can be decomposed
independently.

14/135

Specification of an Architecture Meta-Model

An abstraction level can be a part of a development process or a system represen-
tation with a certain amount of information. Note that the system is represented com-
pletely in each abstraction level. However, not all perspectives may be present in each
abstraction level. To determine the order of abstraction levels in a system package the
system package has the topLevel association. Furthermore, each abstraction level has
an association to its successor abstraction level which enables a list-like concatenation
of abstraction levels.

Generalizations: DeclarationZone

Aggregations

• ownedPerspective : Perspective [0..*] A set of perspectives contained in the
model of the abstraction level.

Associations

• owner : SystemModel [0..1] The owning system model of the abstraction
level.

• successor : AbstractionLevel [0..1] The succeeding level of abstraction in an
ordered set of abstraction levels.

• perspective : Perspective [0..*] A set of perspectives which are not neccessar-
ily contained in the model of the abstraction level (it might be useful)

• category : AbstractionLevelCategory [0..1] The (optional) category to which
this abstraction level belongs.

2.1.4.3 AbstractionLevelCategory

An abstraction level category refers to certain development processes. It thereby helps
to sub divide the abstraction levels in process steps. They can also be used to clarify,
where on which abstraction level(s) specific analysis tools can be utilized.

Generalizations: ReusableElement

2.1.4.4 Perspective

A perspective (related to the ISO/IEC 42010 IEEE Std 1471-2000) is a structural/ar-
chitectural viewpoint constraining a component view for at least one abstraction level
based on structural/architectural criteria. These structural elements can be decomposed

15/135

Specification of an Architecture Meta-Model

independently from other elements of one abstraction level. Elements of one perspec-
tive can be allocated to elements of another perspective. Furthermore, all elements of
a specific perspective may constitute a target architecture description.

Perspectives allow for different description parts of the same system in one abstrac-
tion level. Thereby different modelling artifacts are used. On major distinction be-
tween perspectives is that the set of structural hierarchy driving artifacts may differ,
i. e. the hierarchry of requirements may differ from the hierarchy of components. The
preliminary set of available perspectives include: Operational, Functional, Logical,
Technical, and Geometric. It must be evaluated if this set contains all needed perpec-
tives or if a generic approach is more appropriate.

In order to give analysis tools a starting point in each perspective a rootElement is
contained. It denotes the topmost element of the decompositional hierarchy within the
abstraction level’s perspective.

Generalizations: DeclarationZone

Attributes

• kind : PerspectiveKind [1] The kind of the perspective.

Associations

• root : SystemArtefact [0..1] The topmost element of the hierarchy within this
perspective.

• abstractionLevel : AbstractionLevel [0..*] A set of abstraction levels which
refer to the model of the perspective.

• owner : AbstractionLevel [1] The abstraction level that owns this perspective.

2.1.4.5 PerspectiveKind {Enumeration}

Each perspective has a perspective kind which (loosely) gives the user a hint which
model artifacts to use in this perspective, e. g. the operational perspective kind allows
to use artifacts like activities. The (preliminary) set of perspective kinds includes the
following literals:

EnumerationLiterals

operational Denotes the operational perspective containing activities contributing to
the operation of the system under design.

functional Denotes the functional perspective containing functional requirements
(not necessarily user-visible) and internal functionality.

16/135

Specification of an Architecture Meta-Model

logical Denotes the logic perspective containing structural and behavioral component
descriptions.

technical Denotes the technical perspective containing hardware components along
with resource and scheduling modeling artifacts.

geometric Denotes the geometric perspective containing geometric information
about the system.

2.1.4.6 Aspect

An aspect is a non-functional viewpoint constraining a component view for at least
one perspective based on functional/non-functional criteria. It projects the dynamics
specifications of architecture design from a certain point of view. It is reusable and
refers to a set of system artifacts, which are relevant for the concerned aspect, which
is given by the name of the aspect. SPES supports generic aspects such as safety,
realtime, and others.

Generalizations: ReusableElement

2.1.4.7 SystemArtefact {abstract}

SystemArtefact is an abstract meta-class. Concrete sub-classes are Requirement, Rich-
Component and VVCase.

Generalizations: ReusableElement

Associations

• aspect : Aspect [0..*] The aspect(s) motivating the presence of the system
artifact.

2.1.5 Types

Types provide the ability to declare a set of possible valuations for data items and
allowed structures for elements. This section describes the type concepts which are
provided by the SPES Meta-Model. Figure 2.7 displays an outline.

2.1.5.1 Type {abstract}

A type denotes data values or element structures. Type is an abstract meta-class and
has two subclasses: DataType and ExtensionType.

Generalizations: ReusableElement

17/135

Specification of an Architecture Meta-Model

Type

DataType ExtensionType

Figure 2.7: Types.

2.1.5.2 DataType {abstract}

A data type denotes a set of data values. DataType is an abstract meta-class and has
four subclasses: Array, Record, PrimitiveType, and Enumeration. See Section 2.5 for
details on data types.

Generalizations: Type

Operations

• isBoolean(): Boolean Overridden in subclasses.

context PrimitiveType: : isBoolean(): Boolean
post: result = (self .kind = PrimitiveTypeKind: :boolean)

• isReal(): Boolean Overridden in subclasses. Specified as for isBoolean()
above.

• isInteger(): Boolean Overridden in subclasses. Specified as for isBoolean()
above.

• isString(): Boolean Overridden in subclasses. Specified as for isBoolean()
above.

• isVoid(): Boolean Overridden in subclasses. Specified as for isBoolean()
above.

• isNumber(): Boolean Returns true if the type in question is intended to be
used with arithmetic operators.

context DataType: :isNumber(): Boolean
post: result = (self . isInteger() or self . isReal())

• conformsTo(DataType): Boolean Specifies whether the types denoted by self
and other are compatible.

18/135

Specification of an Architecture Meta-Model

2.1.6 Constants

As depicted in Figure 2.8 Constant values such as a natural number are reusable ele-
ments, which can be referenced by Expressions. These entities, also known as rigid
variables, could be shared across multiple HRC models by packaging them into li-
braries.

Constant ExpressionDataType +value

1

+type

1

Figure 2.8: Constants.

2.1.6.1 Constant

A Constant inherits from NavigableFeature and ReusableElement. A Constant is as-
sociated to exactly one DataType by its type and owns exactly one value, which is a
statically computable Expression.

Generalizations: NavigableFeature, ReusableElement

Aggregations

• value : Expression [1] The value of the constant.

Associations

• type : DataType [1] The type of the constant.

Constraints Constants are subject to the following constraints:

1. The value of a Constant must be statically computable.

2.1.7 Textual Elements

Some elements contain textual descriptions. Such a textual description can be optional
but there are special opaque elements which are only represented by their contained
text. Figure 2.9 gives an overview over all textually representable elements.

19/135

Specification of an Architecture Meta-Model

TextuallyRepresentedElement

+ textualRepresentation: String

ExpressionActionSpecification Assertion Mapping

Figure 2.9: Textually represented element.

2.1.7.1 TextuallyRepresentedElement {abstract}

This abstract meta-class allows model elements to carry a textual representation of
themselves. This representation is stored in a String attribute that is allowed to be
empty. This means that the textual representation is actually optional. This meta-class
has six subclasses: Assertion, Mapping, Expression, Requirement, and ActionSpecifi-
cation.

Attributes

• textualRepresentation : String [1] The textual representation as a String.

2.1.8 Values

This section deals with a general value concept, which considers expressions and ele-
ment referencing. Figure 2.10 depicts the general meta-class structure of values in the
SPESMM Core. Note for the profile usage all expressions are represented as Strings!

Value

ExpressionElementReference ElementList

Element

TextuallyRepresentedElement

+ textualRepresentation :String

+element

1

+element

0..*

Figure 2.10: Values.

20/135

Specification of an Architecture Meta-Model

2.1.8.1 Expression {abstract}

The abstract Expression meta-class denotes all the available expressions in Contract
models. The evaluation of an expression is guaranteed to be side-effect-free, by con-
trast with action specifications.

Expression has sub-classes that correspond to the syntactical means by which ex-
pressions are specified: constant literals, instance specifications for records and arrays,
built-in binary or unary expressions, navigation expressions and function calls.

An expression may carry a textual representation of itself since Expression inherits
from TextuallyRepresentedElement.

Whenever subclasses of Expression have associations with Expression or a subclass,
these associations are always defined as composite aggregations, which ensures that
expressions are organized in trees.

Generalizations: Value

Operations

• type(): DataType Determines the data type of the tested expression. Every
expression has a data type. This abstract query is redefined in subclasses.

• conformsTo(DataType): Boolean Determines whether the tested expression
has a type that conforms to a given data type.

context Expression: :conformsTo(dt: CoreDataType): Boolean
post: result = (self .type().conformsTo(dt))

• intValue(): Integer If the expression has Integer type, this operation returns
the value obtained by evaluating the expression.

• boolValue(): Boolean If the expression has type Boolean, this operation re-
turns the value obtained by evaluating the expression.

• realValue(): Real If the expression has type Real, this operation returns the
value obtained by evaluating the expression.

• stringValue(): String If the expression has type String, this operation returns
the value obtained by evaluating the expression.

Constraints Expressions are subject to the following constraints:

1. Expressions must be correctly typed. This general constraint is defined precisely
in sub-classes.

21/135

Specification of an Architecture Meta-Model

2.1.8.2 ElementReference

An Element Reference denotes a referenced element. Element Reference inherits from
Value.

Generalizations: Value

Associations

• element : Element [1] The referenced element.

2.1.8.3 ElementList

An Element List denotes a list of referenced elements. Element List inherits from
Value.

Generalizations: Value

Associations

• element : Element [0..*] The referenced elements.

2.1.9 Navigable Elements

Some elements can be directly referenced and therefore referenced from expressions.
Such elements are called navigable features. Figure 2.11 gives an overview.

NavigableFeature

Parameter Variable EndParameter Pin

Port

+ isConjugated: Boolean
RichComponentProperty

FailureCondition

+ mode: FailureMode
+ severity: FailureSeverityKind

Constant

Figure 2.11: Navigable elements.

22/135

Specification of an Architecture Meta-Model

2.1.9.1 NavigableFeature {abstract}

This meta-class encompasses the features (model elements) which can be navigated,
or referenced, in expressions. The subclasses are: Parameter, Port, RichComponent-
Property, Pin, FailureCondition, Constant, EndParameter, and Variable.

Generalizations: NamedElement

Operations

• type(): Type Returns the data type of the navigable feature, if existant. Other-
wise, returns oclUndefined.

2.1.10 Templates

A template defines a re-usable parameterized definition of a family of model elements
as depicted in Figure 2.12. Members of such families are similar and differ from one
another only in so far as they may have different values associated with the parameters
of the template.

Parameter DataType

TemplatableElement

ParameterSubstitution Expression

RichComponent

PortSpecificationBehaviorBlock

InformalAssertion

«isOfType»

+type

1

+actual

1

+formal1

+template

0..1

+parameter

0..*

+realization

0..1

+parameterSubstitution

0..*

+referencedTemplate
0..1

Figure 2.12: Templates.

2.1.10.1 TemplatableElement {abstract}

TemplatableElement defines model elements that can be created in the form of a tem-
plate. A templatable element, in the role of template, may own a number of parameters.

And in the role of template realization, a templatable element may own a number
of parameter substitutions which are the model elements that serve to bind formal pa-
rameters to actual values. A Templatable element TI in the role of template realization
will also have a template association with the templatable element T, in the role of

23/135

Specification of an Architecture Meta-Model

template, whose parameters are being bound by the parameter substitutions owned by
TI.

Aggregations

• parameter : Parameter [0..*] The parameters of this template.

• parameterSubstitution : ParameterSubstitution [0..*] The bindings of this tem-
platable element realization.

Associations

• template : TemplatableElement [0..1] If present, the templatable element at
the end of the template association is the template that this templatable element
is realizing.

Operations

• isTemplate() : Boolean Returns true iff this templatable element is playing the
role of template, i. e. if it has parameters.

context TemplateableElement
post: result = self .parameter→notEmpty()

• isRealization() : Boolean Returns true iff this templatable element is playing
the role of template realization, i. e. if it has parameter substitutions.

context TemplateableElement
post: result = self .parameterSubstitution→notEmpty()

Constraints Templatable elements are subject to the following constraints:

1. A templatable element that is playing the role of template realization must have
a corresponding template (a templatable element that is playing the role of tem-
plate accessible via the template role):

context TemplatableElement inv RealisationsHaveTemplates:
self . isRealisation() implies self .template→notEmpty()

2. All the parameter substitutions of a template realization are for parameters that
belong to the template of this realization:

context TemplatableElement inv MySubstitutionsAreForMyTemplateFormals:
self .parameterSubstitution→forAll(ps |

self .template.parameter→includes(ps.formal))

24/135

Specification of an Architecture Meta-Model

2.1.10.2 Parameter

Instances of Parameter are formal parameters in the model. Parameters are named ele-
ments with an association with DataType that indicates the intended type of the actual
elements. Formal parameters are associated with templates (TemplatableElement), in-
terconnection specifications, services, functions and rich connectors.

Parameter

Serv ice

+ direction: ServiceDirection

DataType

Serv icePin

+ direction: ServiceDirection
ValueFunction

TemplatableElement

Initializer

InterconnectionSpecification

«isOfType»
+type

1

+function

0..1 +parameter

0..*
{ordered}

+initializer

0..1 +parameter

0..*

+interconnection

0..1

+parameter0..*

+service

0..1

+formalParameter0..*

+servicePin

0..1+parameter

0..*

+template

0..1

+parameter 0..*

Figure 2.13: Parameters.

Generalizations: NavigableFeature

Associations

• type : DataType [1] The type of values that will be bound to this parameter.

• service : Service [0..1] If present, the service that owns this parameter.

• servicePin : ServicePin [0..1] If present, the service pin that owns this param-
eter.

• function : Function [0..1] If present, the function that owns this parameter.

• template : TemplatableElement [0..1] If present, the template that owns this
parameter.

• interconnection : InterconnectionSpecification [0..1] If present, the intercon-
nection specification that owns this parameter.

• initializer : Initializer [0..1] If present, the initializer that owns this parameter.

2.1.10.3 ParameterSubstitution

A parameter substitution is a model element that serves to bind the formal parameters
of a template or interconnection specification with actual values in the context of an
realization of that template.

25/135

Specification of an Architecture Meta-Model

ParameterSubstitution

TemplatableElement

Expression

Parameter

ElaboratedInterconnection InterconnectionSpecification

+elaboratedInterconnection 0..1

+parameterSubstitution 0..*

«isOfType»

+specification

1

+actual

1

+interconnection 0..1

+parameter 0..*

+formal

1

+template

0..1

+parameter 0..*

+realization 0..1

+parameterSubsti tution 0..*

+referencedTemplate
0..1

Figure 2.14: Parameter Substitution.

Aggregations

• actual : Expression [1] An expression which gives the actual value to which
the formal parameter.

Associations

• formal : Parameter [1] The formal parameter being bound.

• template : TemplatableElement [0..1] If present, templatable element, in the
role of template realization, who owns this parameter substitution.

• elaboratedInterconnection : ElaboratedInterconnection [0..1] If present, the
elaborated interconnection that owns this parameter substitution.

Constraints Parameter substitutions are used by both by templatable elements and
by elaboration specifications as illustrated in Figure 2.14. Parameter substitutions are
subject to the following constraints:

1. A parameter substitution is owned either by a templatable element (in the role
of actualization) or by an elaborated interconnection:

context ParameterSubstitution inv ownedByTemplateOrInterconnection:
self .template→notEmpty() xor self .elaboratedInterconnection→notEmpty()

26/135

Specification of an Architecture Meta-Model

2. The formal parameter of a parameter substitution that is owned by a template
realization, must be owned by the corresponding template:

context ParameterSubstitution inv templateOwnsFormals:
self .template→notEmpty() implies

self .template.template.parameter→includes(self .formal)

3. The formal parameter of a parameter substitution that is owned by an elaborated
interconnection, must be owned by the corresponding interconnection specifica-
tion:

context ParameterSubstitution inv interconnectionOwnsFormals:
self .elaboratedInterconnection→notEmpty() implies
self .elaboratedInterconnection.specification.parameter→includes(self .formal)

4. The actual parameter must be statically computable:

context ParameterSubstitution inv actualIsStaticallyComputable:
self .actual.isStaticallyComputable()

5. The types of the actual and formal match:

context ParameterSubstitution inv ActualTypeMatchesFormal:
self .actual.type().conformsTo(self .formal.type)

2.1.11 Multiplicities

Certain of the elements of a Contract model serve as the specification that a number
of model elements should exist in a real system. The number of elements specified is
indicated by an integer size associated with the element.

The multiplicity elements are rich component properties and ports. This means a
rich componentmay be defined with a part p of size 3, for example, which defines
a component with three ports of name p, each with the same port specification and
accessible via the notation p[0], p[1] and p[2].

2.1.11.1 MultiplicityElement {abstract}

MultiplicityElement is the abstract super-class of all model elements that have a size
for the purpose of indicating the number of instances to be created in the model for
execution and simulation purposes.

Aggregations

• size : Expression [1] An expression which holds the actual size of this multi-
plicity element.

27/135

Specification of an Architecture Meta-Model

MultiplicityElement Expression

RichComponentProperty Port

+ isConjugated: Boolean

+size

1

Figure 2.15: Multiplicities.

Constraints Multiplicity elements are subject to the following constraints:

1. The size expression must be of Integer type:

context MultiplicityElement inv sizeIsInteger :
self . size .type(). isInteger()

2. The size expression must be statically computable:

context MultiplicityElement inv sizeIsStaticallyComputable:
self . size .isStaticallyComputable()

2.1.12 Rich Components

In this section rich components and their dependencies are presented. As depicted in
Figure 2.16 a component reflects structural modeling but also behavioral aspects which
are shown in Figure 2.17.

Figure 2.17 shows component behavior concepts like component initialization, ser-
vice implementations as well as behavior descriptions with behavior links that are
described in Section 2.2.8 and component operation concepts like failure conditions as
described in Section 2.4.

2.1.12.1 RichComponent

A rich component describes a type of structural unit (by contrast to an HRC block
that denotes a type of behavior unit) that share the same characterization of features,
constraints, and dynamics.

A rich component is both, a reusable element and a templatable element. A rich
component in the role of template realization implicitly specifies the features and dy-
namics defined by its template, in which all template parameters are replaced by the
actual ones.

28/135

Specification of an Architecture Meta-Model

RichComponent

RichComponentProperty
Interconnection

Port

+ isConjugated: Boolean Variable

LogicalComponent TechnicalComponent

OperationalActiv ity System

SystemContext

Env ironmentComponent

Function

+component

1 +interconnection

0..*

+component

1

+port

0..*
+component

0..1

+attribute

0..*+component

1

+part

0..*

«isOfType»

+type

1

Figure 2.16: Rich Component structure.

RichComponent

Serv iceImplementation

Initializer

Behav iorLink

BlockOccurrence

Phase

+ endPhase: boolean

FailureCondition

+ mode: FailureMode
+ severity: FailureSeverityKind

+availableComponent

0..*

+component0..1

+behavior 0..1+fai lureCondition

0..*

+component 1
+phase 0..1

+component

1

+initial izer

0..1

+component0..1

+behaviorLink

0..*

+component

1+serviceImplementation

0..*

Figure 2.17: Rich Component behavior.

The structural features of a rich component include rich component properties, ports,
and local variables. Rich components communicate data-typed values with their en-
vironments via the interaction points aggregated in their ports. That is the flows or
services owned by the port specifications that type these ports. In later course, we also
call these interaction points directly “the flows (or the services) of the rich component”.
Flows can be of either the following three directions: in, out, or bidirectional, indicat-
ing the owning component either inputs, outputs, or does both, values via the flows. By
contrast, a service is either provided or required by the owning rich component. When
a service is provided, the rich component meanwhile owns a corresponding service
implementation for it.

In addition, a rich component may own local variables that are of data types, and rich
component properties whose types are also rich components. The former define the
attributes of the rich component, and the latter identify the parts of the rich component,
i. e. its sub-components. Note that both attributes and parts of a rich component are
private, in the sense that neither of themare visible outside the rich component. The
only access points between the rich component and its environment are the interaction

29/135

Specification of an Architecture Meta-Model

points in the ports of the rich component.
A rich component may optionally own an initializer. The purpose of the initial-

izer is to assign initial values to the attributes of the instances of the rich component.
Moreover, if the rich component has nested sub-components, in the body of the ini-
tializer, the corresponding initializers of the rich components that type these nested
sub-components can also be invoked to initialize the sub-instances (see Initialization-
Call).

The inter-connection configuration of a rich component and its sub-components are
specified by its interconnections. Two kinds of interconnections can be specified stat-
ically: the finer one — bindings (including both flow bindings and service bindings),
which bind the interaction points of the component or its sub-components; and the
coarser one — connectors among ports, which serve as a short-cut to bind all the
interconnection points in each connected ports with the same names. All these inter-
connections are owned by the rich component. In addition, a rich component may also
specify its inter-connection configuration dynamically in terms of “elaboration codes”.

The dynamics of a rich component is depicted by its contracts and its behavior.
Contracts are fulfilled by the rich component and expressed in terms of assumptions
and promises, requiring the environment to behave as assumed, and guaranteeing the
rich component to behave as promised. There are two kinds of contracts: an atomic
contract that owns a pair of assertions for the assumption and promise respectively, and
a composite contract that is a composition of contracts using a number of operators
such as: glb, parallel, and fusion. Please refer to ContractCompositionOperator for
details. Finally, according to the perspective from which a contract talks about the
specification of the component, contracts are categorized into viewpoints.

In contrast to contracts, the behavior of a rich component defines the inherent dy-
namics of the rich component, where the behavior is specified by a block occurrence
to describe the dynamics at an abstracted level.

An HRC block exposes dynamics on its owned pins. Then an instance of such a
pin, which is owned by block occurrences of this HRC block, will be linked to either a
flow, a service, or an attribute of the rich component that owns this block occurrence,
to state that the dynamics of the component on the flow, the service, or the attribute is
as specified by the HRC block on the linked pin. Such links are owned by the same
rich component.

Generalizations: TemplatableElement, ReusableElement

Aggregations

• attribute : Variable [0..*] The set of attributes owned by the rich component.

• part : RichComponentProperty [0..*] The set of sub-components owned by
the rich component.

• port : Port [0..*] The set of ports owned by the rich component.

30/135

Specification of an Architecture Meta-Model

• interconnection : Interconnection [0..*] The set of interconnections owned by
the rich component.

• initializer : Initializer [0..1] The initializer of the rich component.

• behavior : BlockOccurrence [0..1] The behavior owned by the rich compo-
nent.

• serviceImplementation : ServiceImplementation [0..*] The implementations
of services owned by the rich component.

• behaviorLink : BehaviorLink [0..*] The set of links owned by the rich com-
ponent.

• failureCondition : FailureCondition [0..*] Set of conditions for failures during
the operation of the component.

Operations

• isGrayBox() : Boolean This operation, used in constraints, tells whether a rich
component is a gray box or not (if not, then it is black box).

context RichComponent
post: result = self .part→notEmpty()

Constraints Rich components are subject to the following constraints:

1. The operation hasSubcomponentOfType(rc: RichComponent) is used to deter-
mine whether the given rich component appears as the type of a direct or indirect
part (i. e. a subcomponent) of the current rich component:

context RichComponent
def: hasSubcomponentOfType(rc: RichComponent) =

self .part→exists(p | p.type = rc or p.hasSubcomponentOfType(rc))

2. A rich component can never own, directly or recursively, a part/sub-component
of its own type:

context RichComponent inv noRecursiveParts:
not self .hasSubcomponentOfType(self)

2.1.12.2 OperationalActivity

An operational activity is a rich component that denotes an activity in the operational
perspective.

31/135

Specification of an Architecture Meta-Model

Generalizations: RichComponent

2.1.12.3 Function

A function is a rich component that denotes a function in the functional perspective
that shall be fulfilled by the system.

Generalizations: RichComponent

2.1.12.4 LogicalComponent

A logical component is a rich component that denotes a logical system component in
the logical perspective.

Generalizations: RichComponent

2.1.12.5 System

A system is a rich component that denotes a system under design in the logical per-
spective. A system may be decomposed by instances of logical components.

Generalizations: RichComponent

2.1.12.6 EnvironmentComponent

An environment component is a rich component that denotes a component of the envi-
ronment, such as an actor, that interacts with the system(s) under design in the logical
perspective.

Generalizations: RichComponent

2.1.12.7 TechnicalComponent

A logical component is a rich component that denotes a technical system component
in the technical perspective. The TechnicalComponent is used to describe functional
hardware. The TechnicalComponent is a structural entity that is part of an electrical
architecture. Through its ports it can be connected to other electrical hardware com-
ponents. Its sub-meta-classes add more information about which hardware component
is represented. The TechnicalComponent is only to be used in case the designer does
not know more specific details about the hardware to represent (the sub-meta-classes
should be the primarily used hardware modeling artifacts).

Generalizations: RichComponent

32/135

Specification of an Architecture Meta-Model

2.1.13 RichComponents and Parts

The definition of component parts provides a means for arbitrary hierarchies of com-
ponent composition. As depicted in Figure 2.18 RichComponentProperties are parts of
RichComponents and as well typed by respective RichComponents. Thus composed
components can be reused in another component context by being assigned to a com-
ponent part as a type. Furthermore, a RichComponentProperty can be assigned a size
which denotes its multiplicity and expresses that a component owns a RichCompo-
nentProperty typed by one RichComponent several times.

RichComponent RichComponentProperty

+component

1

+part

0..*

«isOfType»

+type

1

Figure 2.18: Rich Component Property.

2.1.13.1 RichComponentProperty

A rich component property specifies a part/sub-component of a rich component. A
rich component property is both a navigable feature, and a multiplicity element.

Generalizations: NavigableFeature, MultiplicityElement

Associations

• type : RichComponent [1] The type of the rich component property.

• component : RichComponent [1] The rich component that owns the rich com-
ponent property as a part.

2.1.14 Componenets and Ports

The concept of ports provides a means of interface specification for components. As
depicted in Figure 2.19 a ports type can be specified. A port can be referenced from
expressions as well. Furthermore a port can have asize which denotes its multiplicity
and expresses that a component owns a port of one type several times.

2.1.14.1 Port

A port is owned by a rich component. It aggregates a set of interaction points of the
owning rich component. A port is typed by a port specification, which specifies the set
of interaction points in terms of flows or services.

A port is both a navigable feature, and a multiplicity element.

33/135

Specification of an Architecture Meta-Model

RichComponent Port

+ isConjugated: Boolean

PortSpecification

«isOfType»

+type

1

+component

1 +port
0..*

Figure 2.19: Ports.

Generalizations: NavigableFeature, MultiplicityElement

Attributes

• isConjugated : Boolean [1] If true, the flow/service directions defined in the
corresponding port specification are all treated as if reversed. By default, the
value is false. This facility allows to specify peer ports (i. e. with the same
flows/services but complementary directions.) For flows, the complementary
directions are: in for out, out for in, and bidirectional for bidirectional. For ser-
vices, the complementary directions are: required for provided, and vice versa.

Associations

• type : PortSpecification [1] The port specification that types the port.

• component : RichComponent [1] The rich component that owns the port.

2.1.15 Components and Attributes

In this section the concept of variables as depicted in Figure 2.20 is described.

VariableRichComponent DataType
«isOfType»

+type

1

+component

0..1

+attribute

0..*

Figure 2.20: Variables.

2.1.15.1 Variable

A variable associates a name with a data type. It represents a permanent storage unit
for a value of the data type. The name is inherited from meta-class NamedElement via
NavigableFeature.

Variables are used to define attributes for rich components, local variables for com-
posite actions and local variables for machine blocks.

34/135

Specification of an Architecture Meta-Model

Generalizations: NavigableFeature

Associations

• type : DataType [1] The data type of the variable.

• component : RichComponent [0..1] If present, specifies the rich component
that owns the variable as an attribute.

• compositeAction : CompositeAction [0..1] If present, specifies the composite
action that owns this local variable.

• block : MachineBlock [0..1] If present, specifies the machine block that owns
this local variable.

2.1.16 Components and Interconnections

As described in Section 2.1.13 properties of components and component parts can
be interconnected. In this section interconnections between ports as depicted in Fig-
ure 2.21 are described.

RichComponentProperty

RichComponent Interconnection

Port

+ isConjugated: Boolean

Connector FlowBinding Serv iceBinding

Serv ice

+ direction: ServiceDirection

Flow

+ direction: FlowDirection
+ kind: FlowKind

ElaboratedInterconnection

EndSubstitution «instanceRef»

+port

1..*

+elaboratedIinterconnection 1

+endSubstitution 0..*

«instanceRef»

+port 1

«instanceRef»

+flow 1..*

+component

1

+interconnection

0..*

+component
1

+port

0..*

+component 1

+part 0..*

«isOfType»

+type 1

«instanceRef»

+service 1..*

Figure 2.21: Interconnections.

2.1.16.1 Interconnection {abstract}

An interconnection is owned by a rich component. It specifies how the interaction
points of the rich component and its sub-components are inter-connected.

An interconnection can be fixed interconnection which statically specifies how a rich
component and its sub-components are inter-connected. A fixed interconnection owns

35/135

Specification of an Architecture Meta-Model

two or more interconnection ends. There are four concrete sub-classes are defined
for fixed interconnections: FlowBinding that connects (instances of) flows; Service-
Binding that connects (instances of) services; Connector that connects (instances of)
ports; and ElaboratedInterconnection (see Section 2.1.18). An interconnection is also
a named element.

Generalizations: NamedElement

Associations

• component : RichComponent [1] Specifies the rich component that owns the
interconnection.

2.1.16.2 Connector

A connector is a kind of fixed interconnections. The interconnection ends owned by
a connector must be 2 or more port ends, which represent one instance (or an array
of instances) of a port of the rich component that owns the connector, or of a sub-
component of the owning component.

Generalizations: Interconnection

Aggregations

• end : Connector port [1..*] Specifies the ends of the interconnection.

Constraints Connectors are subject to the following constraints:

1. The interconnection ends owned by a connector must be port ends.
Formal OCL constraint TBD.

2.1.16.3 Connector port

Connector port is an InterconnectionEnd and references exactly one port of the com-
ponent that owns the connector or one instantiated port of the component’s parts. In
the second case the associated component parts denotes the instantiated context of the
component port which is the target of the reference.

Since a ports belongs to a component specification an interconnection which shall
be linked to ports of rich component parts requires a reference to the respective Rich-
ComponentProperty which is typed by the RichComponent. This is called an instance
reference. Such a mechanism is realized by a connector end which references both
the instantiated context and the concrete target port of the respective component as
depicted in Figure 2.22.

36/135

Specification of an Architecture Meta-Model

Connector_port

Port

+ isConjugated: Boolean

Expression

PartReferenceRichComponentProperty

Connector

«instanceRef»

+port 1..*

+end

1..*«instanceRef.root»

+connector

1

+portIndex

0..1

+partIndex

0..1«instanceRef.context»

+part

0..1

«instanceRef.target»

+port

1

Figure 2.22: Connector references to ports of components and component parts.

Furthermore, ports and component parts are MultiplicityElements and can therefore
be instantiated several times by assigning a size to the RichComponentProperty or to
the Port. Such a multiple instantiation is denoted by only one RichComponentProperty
respectively by one Port. When wanting to create an interconnection to one port of a
multiply instantiated port which might even belong to one part of a multiple component
part, the respective index of the port or part has to be given.

Generalizations: PartReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

Assosiations

• port : Port [1] Specifies the referenced port.

2.1.16.4 FlowBinding

A flow binding is a kind of fixed interconnections. The interconnection ends owned by
a flow binding must be 2 or more flow ends, each of which denotes either one instance
or an array of instances of a given flow referenced by the end. Instances of flows
referred to by flow ends of a flow binding are all bound/inter-connected, hence should
synchronize on their values for discrete/continuous flows or on their signals for event
flows.

Generalizations: Interconnection

37/135

Specification of an Architecture Meta-Model

Aggregations

• end : FlowBinding flow [1..*] Specifies the ends of the FlowBinding.

Constraints Flow bindings are subject to the following constraints:

1. The interconnection ends owned by a flow binding must be flow ends:

context FlowBinding inv flowEnds:
self .end→forAll(oclIsKindOf(FlowBinding flow))

2. A flow binding has at least 2 ends:

context FlowBinding inv atLeastTwoEnds:
self .end→size() > 1

2.1.16.5 FlowBinding flow

FlowBinding flow is an InterconnectionEnd of a FlowBinding which references the
exact instance of a flow. Such an instance is denoted by the the service, its contain-
ing port and the respective RichComponent or RichComponentProperty as depicted in
Figure 2.23.

FlowBinding_flow

Flow

+ direction: FlowDirection
+ kind: FlowKind

PartReference

FlowBinding

Port

+ isConjugated: Boolean

RichComponentProperty

Expression

+partIndex

0..1
+portIndex

0..1

«instanceRef.target»

+flow

1

«instanceRef»

+flow 1..*

+end

1..*«instanceRef.root»

+flowBinding

1

«instanceRef.context»

+part

0..1

«instanceRef.context»

+port 1

Figure 2.23: FlowBinding flow.

Generalizations: PartReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

38/135

Specification of an Architecture Meta-Model

Assosiations

• port : Port [1] Specifies the referenced port.

• flow : Flow [1] Specifies the flow referenced.

2.1.16.6 ServiceBinding

A service binding is a kind of fixed interconnections. The interconnection ends owned
by a service binding must be 2 or more service ends, each of which denotes either
one instance or an array of instances of a given service referenced by the end. Note
the interconnection configuration specified by service bindings whose ends referring
to arrays of instances of services is similar to flow bindings, as exemplified above.

Generalizations: Interconnection

Aggregations

• end : ServiceBinding service [1..*] Specifies the ends of the ServiceBinding.

Constraints Service bindings are subject to the following constraints:

1. The interconnection ends owned by a service binding must be service ends:

context ServiceBinding inv serviceEnds:
self .end→forAll(oclIsKindOf(ServiceBinding service))

2. A service binding has at least 2 ends:

context ServiceBinding inv atLeastTwoEnds:
self .end→size() > 1

2.1.16.7 ServiceBinding service

ServiceBinding service is an InterconnectionEnd of a ServiceBinding which refer-
ences the exact instance of a service. Such an instance is denoted by the the service,
its containing port and the respective RichComponent or RichComponentProperty as
depicted in Figure 2.24.

Generalizations: PartReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

39/135

Specification of an Architecture Meta-Model

Serv iceBinding_serv ice

Serv ice

+ direction: ServiceDirection

Serv iceBinding

Expression

PartReference

Port

+ isConjugated: Boolean

RichComponentProperty

+portIndex

0..1

+partIndex

0..1
«instanceRef.context»

+part

0..1

«instanceRef.context»

+port 1«instanceRef.target»

+service

1

«instanceRef»

+service 1..*

+end

1..*«instanceRef.root»

+serviceBinding

1

Figure 2.24: ServiceBinding service.

Assosiations

• port : Port [1] Specifies the referenced port.

• service : Service [1] Specifies the service referenced.

2.1.16.8 PartReference {abstract}

PartReference is an abstract meta-class which provides the ability to reference a Rich-
ComponentProperty as a context for further references to properties of its RichCom-
ponent type. Concrete part references are Connector port, FlowBinding flow, Service-
Binding service, BehaviorLink flow and BehaviorLink service.

Aggregations

• partIndex : Expression [0..1] In case the size of the rich component property
associated is not 1, specifies the index in the multiple element.

Assosiations

• part : RichComponentProperty [0..1] In case the part of a rich component
shall be referenced the respective rich component property is referenced with
this association.

2.1.17 Port Specifications

As described in Section 2.1.14 a port is typed by a PortSpecification. Such a port
specification denotes the data flows and services of a component port with respective
types and directions as depicted in Figure 2.25.

40/135

Specification of an Architecture Meta-Model

DataType
Flow

+ direction: FlowDirection
+ kind: FlowKind

PortSpecification InteractionPoint

Serv ice

+ direction: ServiceDirection

Parameter
Activ ationFlow EnablingFlow

FlowDirection

 in
 out
 bidirectional

FlowKind

 discrete
 continuous
 event
 message

Serv iceDirection

 provided
 required

«isOfType»

+type 1

+returnType

1«isOfType»

+type

1

+portSpecification

1

+interactionPoint

0..*

+service 0..1

+formalParameter 0..*

Figure 2.25: Port Specifications.

2.1.17.1 PortSpecification

A port specification owns a set of interaction points and is used to type ports. It is both
a reusable element and a templatable element.

A port specification defines a (non-empty) set of interaction points that describe the
interactions of any ports that have this specification as their type. A port specification
can be a template and may have template parameters that specify, for example, the size
of array types for its interaction points. Port specification templates are realized by
instances of PortSpecification in the role of template realization, in which case they
may or may not define additional interaction points.

Generalizations: TemplatableElement, ReusableElement

Aggregations

• interactionPoint : InteractionPoint [0..*] The set of interaction points owned
by the port specification.

Constraints Port specifications are subject to the following constraints:

1. An instance of PortSpecification must always have at least one associated inter-
action point, except in the case where the port specification is playing the role of
a template realization:

41/135

Specification of an Architecture Meta-Model

context PortSpecification inv notEmptyUnlessRealization:
self . interactionPoint→isEmpty() implies self . isRealization()

2. A PortSpecification owns either Services or Flows as its interaction point, but
not both.
Formal OCL constraint TBD.

2.1.17.2 InteractionPoint {abstract}

InteractionPoint is an abstract class. It has two sub-classes: Flow and Service. Interac-
tion points aggregate together in a port specification, which is used to type a port. For
any rich component that owns such a port, we also informally say that this component
owns the interaction points: flows and services, of the corresponding port specifica-
tion. An interaction point can be referred to as an end of a binding that binds other
ends referring to other interaction points. We say these interaction points are bound.
There are two types of bindings: flow bindings and service bindings, to bind flows to
flows, and services to services respectively. For the semantics of bound interaction
points, please refer to individual sub-classes.

Moreover, an interaction point can also be referred to as an end of a link where the
other end referring to a block pin with compatible meta-type, namely flow to flow pin
and service to service pin. In this case, the behavior of the owning component on the
interaction point is the same as the behavior of the block on the pin. An interaction
point is a named element.

Generalizations: NamedElement

Aggregations

• portSpecification : PortSpecification [1] The port specification that owns the
interaction points.

2.1.17.3 Flow

A flow specifies an interaction point. A flow is characterized by its data type, its kind,
and its direction. The data type defines the type of values that appear on the flow. The
kind defines when values are available on the flow, and how they change. And the
direction defines whether the owning rich component does input/output/both on the
flow.

Bound flows can be considered as one shared communication point among the own-
ing components. As a consequence, bound flows always have the same values at any
time.

A flow inherits from NavigableFeature. This allows it to initialize flows within the
body of an Initializer.

42/135

Specification of an Architecture Meta-Model

Generalizations: NavigableFeature

Attributes

• direction : FlowDirection [1] Specifies the direction of the flow.

• kind : FlowKind [1] Specifies the kind of the flow.

Assosiations

• type : DataType [1] Specifies the data type of the flow.

2.1.17.4 FlowDirection {Enumeration}

FlowDirection is an enumeration with elements that can be used as literals for speci-
fying input and output directions of flows. Such directions include: in, out, and bidi-
rectional, called the three abstract flow directions.

EnumerationLiterals

in indicates that for any instance of the flow, which is owned by a port owned by a
rich component, the dynamics of this rich component can only do input on this
interaction point.

out indicates that for any instance of the flow, which is owned by a port owned by a
rich component, the dynamics of this rich component can only do output on this
interaction point.

bidirectional indicates that for any instance of the flow, which is owned by a port
owned by a rich component, the dynamics of this rich component can (but not
forced to) do both input and output on this interaction point.

2.1.17.5 FlowKind {Enumeration}

FlowKind is an enumeration with elements that can be used as literals to specify the
kind of a flow. Such kinds include: discrete, continuous, and event, called the three
abstract flow kinds.

EnumerationLiterals

discrete indicates an interaction point where there is always a value available and the
values change only discretely at some time instants.

continuous indicates an interaction point where there is always a value available and
the values either evolve continuously during some time duration or change dis-
cretely at some time instants, i. e. the trajectory is piece-wise continuous.

43/135

Specification of an Architecture Meta-Model

event indicates an interaction point where only at certain time instants there is a value
available and the values may change from instant to instant.

2.1.17.6 ActivationFlow

An activation flow is the communication point through which the rich component that
owns the port that owns it, communicates to the environment the possibility to execute,
i. e. there is a valid outgoing transition from the current active state. Thus the direc-
tion of an activation flow is always out, the kind is discrete and the type is Boolean.
ActivationFlow inherits form Flow.

Generalizations: Flow

Constraints Activation flows are subject to the following constraints:

1. An activation flow must be of kind discrete:

context ActivationFlow inv isDiscrete:
self .kind = FlowKind: : discrete

2. An activation flow must be of direction out:

context ActivationFlow inv isOut:
self .direction = FlowDirection: :out

3. An activation flow must be of type Boolean:

context ActivationFlow inv isBoolean:
self .type.isBoolean()

2.1.17.7 EnablingFlow

An enabling flow is a flow constituting the communication point through which the
environment can control the execution of a rich component. The rich component that
owns an enabling flow disables its execution (is forced to take an empty self-loop
transition) if the value of this enabling flow is true. The enabling flow can be set
only by the environment, thus the direction is in. The kind is discrete and the type is
Boolean, since it is the counterparting coordination port of the activation flow.

Generalizations: Flow

44/135

Specification of an Architecture Meta-Model

Constraints Activation flows are subject to the following constraints:

1. An enabling flow must be of kind discrete:

context EnablingFlow inv isDiscrete:
self .kind = FlowKind: : discrete

2. An enabling flow must be of direction in:

context EnablingFlow inv isIn :
self .direction = FlowDirection: : in

3. An enabling flow must be of type Boolean:

context EnablingFlow inv isBool:
self .datatype.isBoolean()

2.1.17.8 Service

A service is the declaration and the implementation of a service that is provided or
required by a rich component through a port specification.

Generalizations: InteractionPoint

Attributes

• direction : ServiceDirection [1] Specifies whether the service is provided or
required by the hosting rich component.

Aggregations

• formalParameter : Parameter [0..*] {ordered} The input arguments of the ser-
vice.

Assosiations

• returnType : DataType [1] The type the returned value of the service.

2.1.18 Elaboration of Architectures

Sometimes it is useful to be able to specify a complex internal structure for a com-
ponent without explicitly creating and interconnecting all of its sub-components and
their ports. This is particularly useful when one wishes to avoid specifying the number
of interconnected sub-components in advance by, for example, creating a template that
can be instantiated later for a specific number of sub-components.

45/135

Specification of an Architecture Meta-Model

This requirement can be, at least partially, addressed by means using specifications
for certain patterns of interconnection among components (architectures) that can be
used in specific contexts where a component has multiple parts (rich component prop-
erties) and where the size of the parts (number of sub-components to be created) is
specified by a template parameter. In such contexts the pattern of interconnection
among the rich component instances created as specified by the parts can be speci-
fied by an elaborated interconnection, which refers to an interconnection specification
that determines the imperative code that will be executed to effect the interconnection
of components, and the ports of those rich components that are to be connected (see
Figure 2.26).

ElaboratedInterconnection

Interconnection

InterconnectionSpecification

ParameterSubstitution

Expression

Parameter

ActionSpecification

EndParameter

EndSubstitution

Port

+ isConjugated: Boolean

RichComponent

+body

1

+elaboratedIinterconnection

1

+endSubsti tution 0..*

+elaboratedInterconnection0..1

+parameterSubstitution
0..*

«isOfType» +specification

1

+interconnectionSpecification
1

+endParameter 0..*

+formal

1

«instanceRef»

+port1

+actual 1

+component

1

+interconnection

0..*

+interconnection0..1

+parameter0..*

+formal

1

+component

1

+port

0..*

Figure 2.26: Elaboration of Architectures.

2.1.18.1 ElaboratedInterconnection

An elaborated interconnection represents the intention to interconnect certain ports in
a model in a way that cannot easily be described using connectors.

The precise pattern of interconnection to be employed is defined by the intercon-
nection specification associated by the spec association. The parameter substitutions
and end substitutions serve to bind the formal parameters of the interconnection spec-
ification to actual values and ports (via port ends) in the context of this elaborated in-
terconnection. Elaborated interconnections are owned by a rich component for whose
parts it is specifying the interconnection.

46/135

Specification of an Architecture Meta-Model

Generalizations: Interconnection

Aggregations

• endSubstitution : EndSubstitution [0..*]

• parameterSubstitution : ParameterSubstitution [0..*]

Assosiations

• spec : InterconnectionSpecification [1]

• component : RichComponent [1]

2.1.18.2 InterconnectionSpecification

An interconnection specification is a reusable model element that describes a pattern
of interconnection among multiple ports. It is envisioned that a standard library of
interconnection specifications will be provided for use in Contract models covering
such patterns as One-To-One connections, Grids, Total Graphs, Fan-In and Fan-Out,
etc.

An interconnection specification has a number of end parameters, that indicate the
requirement to specify ports to be connected, and may also have a number of normal
parameters (those whose type is a Contract DataType) to configure interconnection
process. The semantics of an interconnection specification is given by its body. The
body is an action specification that typically involves loops and interconnection ac-
tions, that is connector declarations and connect actions, as illustrated in the example
above. A connector declaration specifies the creation of a connector, while a con-
nect action determines the ends of the connector, that is on which end parameters the
connector is connected. Interconnection specifications are reusable elements that are
owned directly by a DeclarationZone.

Generalizations: ReusableElement

Aggregations

• parameter : Parameter [0..*]

• endParameter : EndParameter [1..*]

• body : ActionSpecification [1]

47/135

Specification of an Architecture Meta-Model

2.1.18.3 EndParameter

An end parameter is a formal parameter of an interconnection specification that must
be bound to a port reference by an elaborated interconnection in order to specify which
ports of which rich component properties should be connected during the model’s
elaboration phase.

An end parameter has a name that describes its role with respect to its owning in-
terconnection specification. The name is inherited from meta-class NavigableFeature.
Inheritance from meta-class NavigableFeature also allows an end parameter to be nav-
igated (like an array) in order to handle multiplicity. This allows to bind an end pa-
rameter to a port that has a multiplicity.

Generalizations: NavigableFeature

Assosiations

• interconnectionSpecification : InterconnectionSpecification [1]

2.1.18.4 EndSubstitution

An end substitution is a model element that serves to bind formal end parameters of
an interconnection specification to port references that specify the port an d part (rich
component property) that is to be connected.

Generalizations: ReusableElement

Aggregations

• actual : EndSubstitution port [1]

Assosiations

• formal : EndParameter [1]

• elaboratedInterconnection : ElaboratedInterconnection [1]

2.1.18.5 EndSubstitution port

The meta-class EndSubstitution port (see Figure 2.27) denotes a port instance refer-
enced by an EndSubstitution. It references exactly one port of the component that owns
the ElaboratedInterconnection owning the Endsubstitution or one instantiated port of
the component’s parts. In the second case the associated component parts denotes the
instantiated context of the component port which is the target of the reference. Since
a port is multiplicity in the case of a given port size the exact port instance can be
denoted by a portIndex.

48/135

Specification of an Architecture Meta-Model

EndSubstitution_portEndSubstitution

Port

+ isConjugated: Boolean

PartReference
RichComponentProperty

Expression

«instanceRef»

+port 1

+endSubstitution

1 «instanceRef.root»

+actual

1

+portIndex

0..1

+partIndex

0..1

«instanceRef.context»+part

0..1

«instanceRef.target»

+port

1

Figure 2.27: EndSubstitution port.

Generalizations: PartReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

Assosiations

• port : Port [1] Specifies the port referenced.

2.1.19 Domain-, User-, and Tool-specific Extensions

This section deals with the coverage of domain-, user-, and tool-specific extensions for
the SPESMM. The SPESMM is intended be the common meta-model for a systems
engineering development process. It provides a common understanding for system en-
gineering information information that is exchanged. Therefore it provides a common
understandable abstraction from concrete domain-, user- or tool specific information.
The original domain-, user-, or tool-specific information can be addressed by using the
concepts that are provided by this section. These concepts and their relationship to
other CMM elements are depicted in Figure 2.28.

The meta-model concepts provided by this section allow the definition of extension
types. These extension types may have attributes, each being typed by a data type or
by another extension type. Elements of the SPESMM can be typed by such extension
types. According to the attributes being defined for the extension types elements may
have instantiations of these extension attributes. These are extension attribute values.

49/135

Specification of an Architecture Meta-Model

Element

ExtensionType

ExtensionAttribute
OpaqueExtensionElement

ExtensionAttributeValue

Type

Value

DataType

ReusableElement

Expression

NamedElement

+ comment :String [0..*]

+ name :String

+ /qualifiedName :String {readOnly}
ElementReference

ElementList
+upperBound

0..1

+attribute

1
+attribute 0..*

+owningType

1

+value

1

+type

1

+lowerBound

0..1

+extensionAttributeValue
0..*

+element
0..*

+element 1

+extensionType

0..*

Figure 2.28: Elements for domain-, user-, and tool-specific extensions.

They define the value of an attribute for a specific SPESMM element. Extension at-
tribute values can be either expressions or references to other elements. The types of
the values are defined by the corresponding extension attributes. Therefore SPESMM
elements may have attributes which are defined by another ontology or by another
meta-model. This concept allows a type-safe extension of a SPESMM view by orig-
inal domain-, user-, or tool-specific information which is not directly covered by the
SPESMM concepts.

2.1.19.1 Extension Type

An extension type is a classifier of a SPESMM extension. Its semantics are exter-
nally defined. An extension type defines a set of extension attributes. Elements of the
SPESMM can be typed by extension types in order to specialize their semantics and in
order to use the attributes of the extension types.

Generalizations: Type

Aggregations

• attribute : ExtensionAttribute [0..*] The set of attributes which belong to the
extension type.

50/135

Specification of an Architecture Meta-Model

2.1.19.2 ExtensionAttribute

An extension attribute defines an attribute of an extension type. It is typed by a data
type or by an extension type. This defines allowed values for extension attribute values
which are instantiations of extension attributes. The count of values can be limited by
defining a lower and an upper bound.

Generalizations: NamedElement

Aggregations

• lowerBound : Expression [0..1] This denotes the lower bound of the attribute’s
multiplicity. It specifies a lower value for the allowed number of concrete values
which belong to an extension attribute value when instantiating the extension
attribute.

• upperBound : Expression [0..1] This denotes the upper bound of the attribute’s
multiplicity. It specifies an upper value for the allowed number of concrete val-
ues which belong to an extension attribute value when instantiating the extension
attribute.

Assosiations

• type : Type [1] Reference to the type of the extension attribute, which can be
a data type or an extension type.

2.1.19.3 ExtensionAttributeValue

An extension attribute value is an instantiation of an extension attribute. It defines a
value for an attribute compliant to the referenced attribute of an extension type.

Values can be expressions, element references or element lists. This depends on
the type of the referenced extension attribute. It the referenced attribute is typed by
a data type then the value is defined by an expression. If the referenced extension
attribute is typed by an extension type then ElementReference or ElementList is used.
Whether ElementReference or ElementList is used depends on the lower and upper
bound values of the extension attribute. If no lower or upper bound is defined, then
implicitely a 1..1 multiplicity is considered which means that ElementReference is
used. In other cases ElementList is used.

Aggregations

• value : Value [1] The denotes the concrete value of an extension attribute
value. The allowed multiplicity is given by the lowerBound and the upperBound
of the referenced extension attribute.

51/135

Specification of an Architecture Meta-Model

Assosiations

• attribute : ExtensionAttribute [1] Reference the instantiated ExtensionAt-
tribute.

2.1.19.4 OpaqueExtensionElement

An opaque extension element defines a model element whose semantics is only defined
by a referenced extension type.

Generalizations: Element

Constraints Opaque extension elements are subject to the following constraints:

1. An OpaqueExtensionElement must reference at least one ExtensionType.

2.2 Component Behavior Meta-Model

Rich components can be both: They are structured and may have behavior. In the
following means to describe behavior, implementations and how to reference system
artefacts is described.

2.2.1 Value Functions and Calls

This section deals with function descriptions and their invocations. Figure 2.29 gives
an outline.

ValueFunction

Expression Call

FunctionCall Parameter

DataTypeActionSpecification
+definition

0..1

+actualParameter

0..*
{ordered}

«isOfType»

+type

1

+returnType

1

+function

0..1

+parameter

0..*
{ordered}

+function

1

Figure 2.29: Functions and Calls.

52/135

Specification of an Architecture Meta-Model

2.2.1.1 FunctionCall

FunctionCall represents expressions corresponding to function invocations. Such ex-
pressions are syntactically obtained by relating a function (the callee) and an ordered
list of actual parameter expressions.

Generalizations: Expression, Call

Associations

• function : ValueFunction [1] The value function being called.

Operations

• callee(): ValueFunction Inherited from super-meta-class Call.

context FunctionCall def:
callee(): OclAny= self .function

Constraints Function calls are subject to the following constraints:

1. The number of the actual parameters must be the same as the number of the
parameters declared for the function:

context FunctionCall inv formalsAnActuals:
self .actualParameter→size() = self .function.parameter→size()

2. Each actual parameter must be type compatible to the corresponding formal pa-
rameter:

context FunctionCall inv paramTypesMatch:
self .actualParameter→forAll(ap |

let fp: Parameter =
function.parameter→at(actualParameter→indexOf(ap))

in ap.conformsTo(fp.type)

3. The return type is the type of the function:

context FunctionCall : :type(): DataType
post: result = self .function.returnType

2.2.1.2 ValueFunction

A value function is a reusable element that represents a pure (side-effect free) compu-
tational unit which, as usual, computes a return data value corresponding to an ordered
set of argument values. A value function is specified by its name (inherited from
NamedElement), the data type of the return value and data types and names of its
formal parameters. A value function is owned by a declaration zone.

53/135

Specification of an Architecture Meta-Model

Generalizations: ReusableElement

Aggregations

• parameter : Parameter [0..*] {ordered} Specifies the ordered set of parame-
ters.

• definition : ActionSpecification [0..1] The optional action that defines this
value function if the value function is a service.

Associations

• returnType : DataType [1] Specifies the return type of the value function.

Constraints Value functions are subject to the following constraints:

1. Parameter names are unique with respect to their owning value function:

context ValueFunction inv uniqueParameterNames:
self .parameter→isUnique(p | p.name)

2.2.1.3 Call {abstract}

Call is an abstract meta-class. A call relates a callee (which can be implicit) with a list
of actual parameters.

Aggregations

• actualParameter : Expression [0..*] {ordered} The actual parameter list.

Operations

• callee(): Void Determines the callee. This query must be redefined by sub-
classes.

context Call def: callee(): OclAny=OclUndefined

2.2.2 Component Initialization

In this section the initialization of components is described.

54/135

Specification of an Architecture Meta-Model

2.2.2.1 Initializer

An initializer allows specifying the initial value of the attributes of the owning rich
component. An initializer may have formal parameters. Its behavior (body) is defined
by an action specification. The role of that action is, according to the actual values
of the parameters, to assign attributes of the rich component and call initializers of
the direct sub-components (rich component properties) via initialization calls. This
recursive mechanism allows the initialization of the whole tree structure of components
in a component-based system.

The initializer of a rich component is executed when it is called by the body of
another initializer. The initializer of the root component of a system is implicitly called
whenever the entire system needs to be instantiated and initialized, e. g. for simulation.
Figure 2.30 displays the initializer and its relations.

RichComponent

Initializer

ActionSpecification

Parameter DataType

+body

1

«isOfType»

+type

1

+initializer

0..1

+parameter

0..*

+component 1

+initializer 0..1

Figure 2.30: Initializer.

Aggregations

• body : ActionSpecification [1] The body of the initializer.

• parameter : Parameter [0..*] {ordered} The ordered set of formal parameters
of the initialize.

Assosiations

• component : RichComponent [1] The rich component that owns the initializer.

2.2.3 Service Implementations

In this section the implementation of services is described.

55/135

Specification of an Architecture Meta-Model

2.2.3.1 ServiceImplementation

A service implementation is the implementation of a function and it is associated to
a rich component. Figure 2.31 displays the service implementation meta-class and its
relations.

Serv iceImplementation

RichComponent

ActionSpecification

Port

+ isConjugated: Boolean

PortSpecification

InteractionPoint

Serv ice

+ direction: ServiceDirection

DataType Parameter

+body 1

«isOfType»

+type

1

+returnType 1

+portSpecification 1

+interactionPoint

0..*

+service

0..1

+formalParameter 0..*

«isOfType»

+type

1

+component

1

+port

0..*

+component 1

+serviceImplementation 0..*

+specification

1

Figure 2.31: Service Implementation.

Aggregations

• body : ActionSpecification [1] Associates to the function implementation the
actual code of the service.

Assosiations

• specification : Service [1] The service owing this implementation.

• component : RichComponent [1] The rich component that owns the imple-
mentation.

2.2.4 Behavior Definitions

A behavior denotes the dynamics of a rich component. It can refer to an aspect to
indicate that the concrete behavior is related to this specific aspect as depicted in Fig-
ure 2.32.

56/135

Specification of an Architecture Meta-Model

Behavior

Behav iorImplementation

Aspect

BlockOccurrence

RichComponent +component

0..1

+behavior

0..*

+aspect

0..1

Figure 2.32: Behavior definitions.

2.2.4.1 Behavior {abstract}

A behavior provides a description of the dynamics of a rich component and can be
related to an aspect. Behavior is an abstract meta-class. Specializations are Behavior-
Implementation and BlockOccurrence.

Assosiations

• aspect : Aspect [0..1] An aspect which the behavior refers to.

• component : RichComponent [0..1] The component that owns the behavior.

2.2.5 Behavior Implementations

Behavior implementations can be used to describe the implemented behavior of a rich
component. A behavior implementation knows about the ports of a rich component
with its flows and services. It can be any behaviour implementation like C-Code or a
Simulink model. Figure 2.33 gives an overview.

2.2.5.1 BehaviorImplementation

A behavior implementation provides a textual representation of an implemented be-
havior. The interpretation of this textual representation is given by its category, i. e.
C-Code, or external Simulink model. Being a named element a behavior implementa-
tion has a name and may own a set of comments.

Generalizations: Behavior, TextuallyRepresentedElement, NamedElement

Assosiations

• category : BehaviorImplementationCategory [1] The category of the behavior
implementation.

57/135

Specification of an Architecture Meta-Model

Behavior

Behav iorImplementation

TextuallyRepresentedElement

+ textualRepresentation: String

Behav iorImplementationCategory

NamedElement

+ comment: String [0..*]

+ name: String

+ /qualifiedName: String {readOnly}

ReusableElement

+category

1

Figure 2.33: Behavior implementation.

2.2.5.2 BehaviorImplementationCategory

A behavior implementation category provides information about the interpretation of
the textual representation of a behavior implementation.

Generalizations: ReusableElement

2.2.6 Behavior Blocks

In this section behavioral blocks and their structure are described. Figure 2.34 gives
an overview.

2.2.6.1 BehaviorBlock

A behavior block denotes a type of behavior units (by contrast to a rich component
which denotes a type of structural units). An instance of a behavior block, that is
one particular behavior unit of this type, is denoted by a block occurrence, which
can be used in the following circumstances: to specify the formal description of an
assertion that is used either as the assumption or promise of an atomic contract of a
rich component; to specify the behavior of a rich component; to be used as an operand
in an operation on behavior blocks in order to build compound behaviors from basic
ones. Such operations on behavior blocks include: conjunction, disjunction, negation,
renaming and hiding. Please refer to BlockCompositionOperator for details.

58/135

Specification of an Architecture Meta-Model

BehaviorBlock Pin

CompositeBlock

+ operatorKind: BlockCompositionOperator

MachineBlock ProbabilisticBlock

BlockOccurrence
Variable FunctionCallMachineBehavior

+block

1

+pin

0..*

+compositeBlock 0..1

+operand 1..*

+block

0..1

+variable 0..*

+block 0..1

+behavior 0..1

+block 0..1

+probabil ity 0..1

«isOfType»

+type

1

Figure 2.34: Behavior blocks.

A behavior block owns pins that are the interaction points for which the block de-
scribes behavior. Each block occurrence of a behavior block owns an instance of each
pin owned by the behavior block.

The BehaviorBlock is an abstract meta-class with three concrete sub-classes: Ma-
chineBlock, ProbabilisticBlock, and CompositeBlock. Please refer to corresponding
sub-classes to understand how behaviors are specified for each kind of behavior blocks.

The fact that a behavior block only talks about dynamics with respect to the pins
it owns reflects the encapsulation of the behavior units, hence favors reuse. When
a block occurrence is used in the context of a rich component to either specify its
contract or behavior, the pin instances of the block occurrence will be linked to the in-
teraction points (i. e. flows and services) or attributes of the rich component, on which
the dynamics are actually to be defined.

A behavior block is both a reusable element and a templatable element. A behavior
block in the role of template realization may have no pins, normal behavior blocks and
behavior block templates must define at least one pin.

Generalizations: TemplatableElement, ReusableElement

Aggregations

• pin : Pin [0..*] The set of pins that are owned by the behavior block.

Constraints Behavior blocks are subject to the following constraints:

1. A behavior block must have at least one pin unless it is in the role of template
realization:

59/135

Specification of an Architecture Meta-Model

context BehaviorBlock inv pinsUnlessRealization:
self .pin→isEmpty() implies self . isRealization()

2.2.6.2 MachineBlock

The behavior of a machine block is specified by the runs of a state machine owned by
it. The state machine is optional because an instance of MachineBlock in the role of
a template realization need not specify its own state machine, normal machine blocks
and those in the role of template must specify a state machine. A machine block may
also own local variables. Being local, these variables are only visible inside the owning
machine block; specifically, they can be referenced only in the state machine owned
by the same machine block.

Generalizations: BehaviorBlock

Aggregations

• behavior : StateMachine [0..1] The state machine that is owned by the ma-
chine block, which is used to describe the behavior of the machine block.

• variable : Variable [0..*] The (possibly empty) set of variables owned by the
machine block.

Constraints Machine blocks are subject to the following constraints:

1. A machine block must have a state machine unless it is in the role of template
realization:

context MachineBlock inv stateMachineUnlessRealization:
self .behavior→isEmpty() implies self . isRealization()

2.2.6.3 ProbabilisticBlock

A probabilistic block owns a function call and a unique flow pin of kind event (see
FlowKind). The behavior specified by a probabilistic block is the set of “runs” on the
unique flow pin, which includes any sequences of random values generated according
to the probability distribution inherent in the function referred to by the owned function
call. An example of such function call could be “uniform(3, 10)”, where “uniform”
is the uniform distribution function on integers. Values generated at different time
instants are independent from each other.

When a probabilistic block appears in the role of template realization, it may specify
no function call (since it implicitly specifies the function defined by its template).
Normal probabilistic blocks and those in the role of templates must specify a function
call via the probability role.

60/135

Specification of an Architecture Meta-Model

Generalizations: BehaviorBlock

Aggregations

• probability : FunctionCall [0..1] The function call that specifies the probabil-
ity distribution of the random values that are generated by the probabilistic block
on its unique pin.

Constraints Probabilistic blocks are subject to the following constraints:

1. A probabilistic block owns exactly one flow pin:

context ProbabilisticBlock inv ownsOneFlowPin:
self .pin→size() = 1 and self .pin→any(true).oclIsTypeOf(FlowPin)

2. A probabilistic block must specify a function call via its probability role, unless
it is a template realization:

context ProbabilisticBlock inv callUnlessRealization:
self .probability→isEmpty() implies self . isRealization()

2.2.6.4 CompositeBlock

A composite block is an application of a block composition operator on some block
occurrences typed by other behavior blocks (the operands). No recursion is allowed in
the sense that none of the block occurrences that play the role of operands is allowed
to be typed by the same composite block.

Five block composition operators are defined: negation, disjunction, conjunction,
renaming, and hiding. The behavior of a composite block is the result of composing the
corresponding behaviors of the behavior blocks delegated by the operands, following
the semantics of the specified block composition operator.

When the operator of a composite block is renaming, which takes exactly one block
occurrence as operand and the purpose of this operator is to rename some pin of the
operand, the effect of renaming is interpreted by links between pins. More specifically,
if a pin instance of the operand, (i. e. the pin is owned by the HRC block that types the
operand), is linked to a pin of the composite block with a different pin name, that
means this pin is renamed. All such links are owned by the composite block.

Generalizations: BehaviorBlock

Attributes

• operator : BlockCompositionOperator [1] Specifies the operator used in the
composite block.

61/135

Specification of an Architecture Meta-Model

Aggregations

• operand : BlockOccurrence [1..*] The set of block occurrences that play the
role of operands in the composite block.

Associations

• link : Link [0..*] The set of links owned by the composite block.

Constraints Type, kind and direction compatibilities of flow pins in composite
blocks are defined following the companion semantics paper. When considering
the compatibilities of service pins, the constraints come as if we treat a service pin
“sp(p1:t1, . . . , pk=tk): t” as k + 1 flow pins: sp-p1: t1, . . . , sp-pk=tk, sp-result: t. And
for directions:

• if direction(sp) = required, then direction(parai) = out, for i = 1, . . . , k, and
direction(result) = in;

• if direction(sp) = provided, then direction(parai) = in, for i = 1, . . . , k, and direc-
tion(result) = out.

As the soundness of such an approach still needs to be examined (at least semanti-
cally), and overall the design of composite blocks still needs to be checked by users
and tools, we restrict ourselves to only informal English statements for the constraints
on composite blocks in the following.

Composite blocks are subject to the following constraints:

1. A composite block whose operator is negation is called a negation block. A
negation block NegB takes exactly one operand of type SubB. NegB denotes the
complement runs of SubB.
Well-formedness: We require NegB and SubB have the same set of pins. For
flow pins: the same types, kinds, and directions. For service pins, same direc-
tions and signatures (i. e. same parameters including the types of parameters, and
return types).

2. A composite block whose operator is disjunction is called a disjunction block. A
disjunction block DisB takes two or more operands respectively of type SubB1
,. . . , SubBn, n >= 2. DisB denotes the union runs of SubBi, 1 <= i <= n.
Well-formedness: We require that for any shared pin (i.e. more than one sub
blocks own a pin with that name), it has the same meta-type, that is either all
occurrences are as flow pins or as service pins. If flow pins, it has the same type
and kind in all the sharing SubBi’s, 1 <= i <= n. And if service pins, it has
the same directions and signatures in all the sharing SubBi’s. Moreover, the set
of pins of DisB is the union of the sets of pins of SubBi, 1 <= i <= n, with

62/135

Specification of an Architecture Meta-Model

the same types and kinds for flow pins or same directions and signatures for ser-
vice pins. As for directions, there is no restrictions on the directions of shared
flow pins in sub blocks. But the direction of a flow pin p of DisB should be the
least upper bound of the directions of the flow pin p’s in all the sharing SubBi,
1 <= i <= n, where the sub-direction relation is defined as: any direction is a
sub-direction of itself; in is a sub-direction of bidirectional; out is a sub-direction
of bidirectional.
Shared service pins must have the same directions in all the sub-blocks. Other-
wise, consider a shared service pin sp by two sub-blocks SubB1 and SubB2. In
SubB1, direction(sp) = required, i. e. direction(parai) = out, for i = 1, . . . , k, and
direction(result) = in. In SubB2, direction(sp) = provided, i. e. direction(parai) =
in, for I = 1, . . . , k, and direction(result) = out. Following the direction compu-
tation rule for pins of the disjunction block, i. e. the least upper bound of the di-
rections of the pins in all the sharing sub-block, we should have direction(parai)
= bidirectional, for i = 1, . . . , k, and direction(result) = bidirectional, which do
not give a valid direction for a service pin.

3. A composite block whose operator is conjunction is called a conjunction block.
A conjunction block ConB takes two or more operands respectively of type
SubB1 , . . . , SubBn, n >= 2. ConB denotes the product/intersection runs of
SubBi, 1 <= i <= n.
Well-formedness: the same constraints as in disjunction blocks for flow pins,
except that for directions, shared out flow pins are not allowed. Moreover, the
direction of a flow pin p of ConB should be the product of the directions of flow
pin p in all the sharing SubBi’s, 1 <= i <= n, where the product is defined as:

• out X in = out

• out X bidirectional = out

• in X in = in

• in X bidirectional = bidirectional

• bidirectional X bidirectional = bidirectional

Service pins are forbidden to be shared among sub-blocks, and the set of service
pins of ConB is the union of the sets of service pins of SubBi, 1 <= i <= n.

4. A composite block whose operator is renaming is called a renaming block. A
renaming block RnB takes exactly one operand of type SubB. RnB denotes the
same runs as SubB, but renames some pins of SubB.
Well-formedness: We require bijective links between the pins of RnB and the
pin instances of the operand. That is, for any pin of RnB, it is linked to one and
only one pin instance of the operand, and vice versa. Moreover, if pin p1 of RnB
is linked to pin p2 of SubB (via its corresponding instance of the operand), we
require they are of the same meta-type, and the same types, kinds, and directions
if flow pins, and the same directions and signatures if service pins.

63/135

Specification of an Architecture Meta-Model

5. A composite block whose operator is hiding is called a hiding block. A hiding
block HdB takes exactly one operand of type SubB. HdB denotes the same runs
as SubB, but hides some pins of SubB (projection).
Well-formedness: We require the set of pins of HdB is a subset of the pins of
SubB. For flow pins, with the same types, kinds, and directions. For service
pins, with the same directions and signatures.

6. A composite block owns links iff its operator is renaming.

7. A composite block may not be neither a template nor a template realization:

context CompositeBlock inv notTemplate:
not self .isTemplate() and not self . isRealization()

and self .template.isEmpty()

2.2.6.5 BlockCompositionOperator {Enumeration}

BlockCompositionOperator is an enumeration with elements that can be used as liter-
als for specifying the operators applied in a composite block.

EnumerationLiterals

conjunction takes two or more operands and the resulting behavior is the intersec-
tion set of runs specified by the behaviors of the behavior blocks that type the
operands.

disjunction takes two or more operands and the resulting behavior is the union set of
runs specified by the behaviors of the behavior blocks that type the operands.

negation takes exactly one operand and the resulting behavior is the complementary
set of runs specified by the behavior of the behavior block that types the operand.

renaming takes exactly one operand and the resulting behavior is the same set of runs
specified by the behavior of the behavior block that types the operand. However,
some pins of the behavior block may be renamed.

hiding takes exactly one operand and the resulting behavior is the same set of runs
specified by the behavior of the behavior block that types the operand. However,
some pins of the behavior block may be hidden (projected away).

2.2.6.6 BlockOccurence

A block occurrence is typed by a behavior block. It denotes an instance of the behavior
unit specified by its typing behavior block, including corresponding instances of the
pins owned by the behavior block, etc.

64/135

Specification of an Architecture Meta-Model

A block occurrence is either owned by a composite block to play the role of an
operand; or owned by an assertion as its formal presentation; or owned by a rich com-
ponent to specify the behavior of the rich component.

Associations

• type : BehaviorBlock [1] Description of the role of the associated meta-class.

• compositeBlock : CompositeBlock [0..1] If present, specifies the composite
block that owns the block occurrence as its operand.

• component : RichComponent [0..1] If present, specifies the rich component
that owns the block occurrence as its behavior.

• assertion : Assertion [0..1] If present, specifies the assertion that owns the
block occurrence as its formal presentation.

Constraints Block occurrences are subject to the following constraints:

1. A block occurrence is exclusively either owned by a composite block, or an
assertion, or a rich component. This exclusivity is ensured by the semantics of
the aggregation relationships between block occurrence and block occurrence,
composite block, or assertion.

2.2.6.7 MachineBehavior {abstract}

Machine behavior is the behavior specification of a machine block. MachineBehavior
is an abstract meta-class. It’s specializations allow the exact specification of the ma-
chine behavior. A MachineBehavior is represented by an UML state machine in the
profile.

Associations

• block : MachineBlock [0..1] The machine block that owns the MachineBe-
havior.

2.2.7 Pins

In this section behavioral interaction points, which are called pins, are described. Fig-
ure 2.35 givs an overview.

2.2.7.1 Pin {abstract}

A pin is owned by a behavior block. It denotes an interaction point of the owning be-
havior block. The functionality of the interaction point is specified by its sub-classes:
Flow pin and service pin. A pin is a navigable feature.

65/135

Specification of an Architecture Meta-Model

PinBehaviorBlock Parameter

FlowPin

+ direction: FlowDirection
+ kind: FlowKind

Serv icePin

+ direction: ServiceDirection

DataType

FlowDirection

 in
 out
 bidirectional

FlowKind

 discrete
 continuous
 event
 message

Serv iceDirection

 provided
 required

«isOfType»

+type

1

«isOfType»

+returnType 1

«isOfType»

+type

1

+block

1

+pin

0..*

+servicePin

0..1

+parameter 0..*

Figure 2.35: Pins.

Generalizations: NavigableFeature

Associations

• block : BehaviorBlock [1] Specifies the behavior block that owns the pin.

2.2.7.2 FlowPin

The functionality of a flow pin is specified by its kind. It either represents a discretely
evolving variable, or a continuously evolving variable, or a communication point that
carries signals (i. e. having values only at certain time instants) of the owning behavior
block. The type association specifies the data type of the values carried by the flow pin,
and the direction defines whether the owning behavior block does input/output/both on
the flow pin.

Generalizations: Pin

Associations

• Type : DataType [1] Specifies the data type of the values that carried by the
flow pin.

66/135

Specification of an Architecture Meta-Model

2.2.7.3 ServicePin

Service pins are the counterpart of services, where the services are owned by rich
components, service pins are owned by BehaviorBlock. As a consequence, a service
pin syntactically mimics a service, namely specified by a set of parameters, a return
type, and a direction. Similarly, a service pin can be either provided or required by the
owning behavior block depending on its direction as specified by ServiceDirection.

A provided service pin means that the owning block receives service calls on this
pin in its behavior. Symmetrically, a required service pin allows the owning block to
make calls on this pin in its behavior.

Generalizations: Pin

Attributes

• direction : ServiceDirection [1] Specifies if the behavior block calls or pro-
vides the service and takes values from the enumeration service direction.

Aggregations

• parameter : Parameter [1..*] These are the parameters that serve as arguments
for the service call.

Associations

• returnType : DataType [1] Specifies the data type of the return value of the
referred service.

2.2.8 Behavior Links

In this section links between behavioral descriptions and architectural interaction
points and attributes are described. Figure 2.36 displays a logical diagram of behavior
links.

2.2.8.1 BehaviorLink

A behavior link owns exactly two link ends, which are one of the following: Attribute
ends, pin ends, flow link ends, or service link ends.

In general, behavior links are used in three circumstances:

• To associate the dynamics of a pin to a structural feature of a rich component
RC. In this case, the behavior link L is owned by RC. The two link ends of L are
of the following possibilities:

67/135

Specification of an Architecture Meta-Model

Behav iorLink_attribute

BehaviorLinkEndReference Behav iorLink
CompositeBlock

+ operatorKind: BlockCompositionOperator

RichComponent

Variable
Serv icePin

+ direction: ServiceDirection

FlowPin

+ direction: FlowDirection
+ kind: FlowKind

Flow

+ direction: FlowDirection
+ kind: FlowKind

Serv ice

+ direction: ServiceDirection

Port

+ isConjugated: Boolean

BlockOccurrence

PortSpecification

InteractionPoint

Pin

BehaviorBlock

+behaviorLink

1«instanceRef.root»

+end

2

+component

0..1

+attribute

0..*

+component

1

+port

0..*

«isOfType»

+type 1

+attribute

1

+component 0..1

+behaviorLink 0..*

«instanceRef»

+servicePin
0..1

«instanceRef»

+service 0..1

«isOfType»

+type

1

«instanceRef»

+flow
0..1

+portSpecification1

+interactionPoint0..*

+block 1

+pin

0..*

+block

0..1+l ink

0..*

+component

0..1 +behavior

0..1

+compositeBlock0..1

+operand 1..*

«instanceRef»

+flowPin
0..1

Figure 2.36: BehaviorLinks.

– One end of L is a flow pin end. It denotes an instance of a flow pin owned
by either the block occurrence that specifies the behavior of RC, or the
block occurrence that specifies formal presentation of the assertion that is
the assumption or promise of one contract of RC. The other end of L is a
flow link end. It denotes an instance of a flow owned by a port of RC or
one of its sub-components.

– Similar case for services: one end of L is a service pin end, and the other
end of L is a service link end.

– One end of L is a service pin end, and the other end of L is an attribute end
denoting an attribute of RC.

• To express the interaction between the two atomic contracts C1 and C2 of a
rich component RC. In this case, the link L is owned by RC, and both ends are
flow pin ends. One flow pin end denotes an instance of flow pin owned by the
assumption or promise block occurrence of C1, and the other denotes an instance
of flow pin owned by the assumption or promise block occurrence of C2.

• Inside a composite block that applies the renaming operator. See Subsec-
tion 2.2.4 for details.

Aggregations

• end : BehaviorLinkEndReference [2] Specifies the two ends of the behavior
link.

68/135

Specification of an Architecture Meta-Model

Associations

• component : RichComponent [0..1] If present, specify the rich component
that owns the behavior link.

• block : CompositeBlock [0..1] If present, specify the composite block that
owns the behavior link.

2.2.8.2 BehaviorLinkEndReference {abstract}

A behavior link end reference is owned by a behavior link. BehaviorLinkEnd-
Reference is an abstract meta-class with five sub-classes: BehaviorLink attribute,
BehaviorLink flowPin, BehaviorLink servicePin, BehaviorLink flow and Behavior-
Link service.

Associations

• behaviorLink : BehaviorLink [1] Specify the behavior link that owns this
behavior link end reference.

2.2.8.3 BehaviorLink attribute

A BehaviorLink attribute is a link end which references a variable (see Figure 2.37).

Behav iorLink_attribute

Behav iorLink BehaviorLinkEndReference

VariableRichComponent

+behaviorLink

1 «instanceRef.root»

+end

2

+component 0..1

+behaviorLink 0..*

+attribute 1

+component

0..1 +attribute

0..*

Figure 2.37: BehaviorLink attributes.

Generalizations: BehaviorLinkEndReference

69/135

Specification of an Architecture Meta-Model

Associations

• attribute : Variable [1] Specify the attribute that is referenced by the attribute
end.

2.2.8.4 BehaviorLink flowPin

A BehaviorLink flowPin refers to the instance of a flow pin. Figure 2.38 gives more
detail.

Behav iorLink_flowPin

Behav iorLink BehaviorLinkEndReference

FlowPin

+ direction: FlowDirection
+ kind: FlowKind

BlockOccurrence

«instanceRef.context»

+blockOccurrence

0..1«instanceRef.target»

+flowPin

1

+behaviorLink

1 «instanceRef.root»

+end

2

«instanceRef»

+flowPin 0..1

Figure 2.38: BehaviorLink flowPins.

Generalizations: BehaviorLinkEndReference

Associations

• blockOccurrence : BlockOccurrence [0..1] Specify the block occurrence
whose instance of pin is referenced. This association is optional in the case
of renaming blocks, where for one end, the block occurrence is implicitly the
renaming block itself.

• flowPin : FlowPin [1] Specify the flow pin whose instance is referenced by
the flow pin end.

2.2.8.5 BehaviorLink servicePin

A BehaviorLink servicePin refers to the instance of a service pin (see Figure 2.39).

Generalizations: BehaviorLinkEndReference

Associations

• blockOccurrence : BlockOccurrence [0..1] Specify the block occurrence
whose instance of pin is referenced. This association is optional in the case
of renaming blocks, where for one end, the block occurrence is implicitly the
renaming block itself.

70/135

Specification of an Architecture Meta-Model

Behav iorLink_serv icePin

Behav iorLink BehaviorLinkEndReference

BlockOccurrenceServ icePin

+ direction: ServiceDirection «instanceRef.context»

+blockOccurrence

0..1

+behaviorLink

1 «instanceRef.root»

+end

2

«instanceRef»

+servicePin 0..1

«instanceRef.target»

+servicePin

1

Figure 2.39: BehaviorLink servicePins.

• servicePin : ServicePin [1] Specify the service pin whose instance is refer-
enced by the service pin end.

2.2.8.6 BehaviorLink flow

BehaviorLink flow references the instance of a flow which is given by referencing the
containing port and its owning rich component instance. If the size of the associated
port is bigger than 1, then the optional “portIndex: Expression [0..1]” association must
be present to specify exactly one instance in the port. BehaviorLink flow plays the
role of an end of a link that is owned by the same component that also owns the flow.
Figure 2.40 displays the BehaviorLink flow in more detail.

Behav iorLink_flow

BehaviorLinkEndReference

Flow

+ direction: FlowDirection
+ kind: FlowKind

Port

+ isConjugated: Boolean

Expression

RichComponentProperty

PartReferenceBehav iorLink

+portIndex

0..1

+partIndex 0..1

«instanceRef.target»

+flow

1

«instanceRef»

+flow 0..1

+behaviorLink

1 «instanceRef.root»

+end

2

«instanceRef.context»

+part

0..1

«instanceRef.context»

+port 1

Figure 2.40: BehaviorLink flows.

Generalizations: BehaviorLinkEndReference, PartReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

71/135

Specification of an Architecture Meta-Model

Associations

• port : Port [1] Specifies the port referenced.

• flow : Flow [1] Specifies the flow referenced.

2.2.8.7 BehaviorLink service

BehaviorLink service references the instance of a service which is given by referenc-
ing the containing port and its owning rich component instance. If the size of the asso-
ciated port is bigger than 1, then the optional “portIndex : Expression [0..1]” associa-
tion must be present to specify exactly one instance in the port. BehaviorLink service
plays the role of and end of a link that is owned by the same component that also owns
the service. Figure 2.41 displays the BehaviorLink service in more detail.

Behav iorLink_serv ice

BehaviorLinkEndReferenceBehav iorLink

Serv ice

+ direction: ServiceDirection

Port

+ isConjugated: Boolean

RichComponentProperty

PartReference

Expression+portIndex

0..1

+partIndex 0..1

+behaviorLink

1 «instanceRef.root»

+end

2

«instanceRef»

+service 0..1
«instanceRef.context»

+part

0..1

+port 1«instanceRef.target»

+service

1

Figure 2.41: BehaviorLink services.

Generalizations: BehaviorLinkEndReference, PartReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

Associations

• port : Port [1] Specifies the port referenced.

• service : Service [1] Specifies the service referenced.

72/135

Specification of an Architecture Meta-Model

2.2.9 Component Mapping

This section deals with relations between abstraction levels and perspectives. The
general idea is to create some sort of mapping that observes a systems behavior on two
different abstraction levels and validates if the observable behavior is causally equal.
Another possible application of these mapping links is between perspectives. Note
that this is not possible for all perspectives since some perspectives do not formally (as
in typed data) specify observable behavior (e. g. the operational perspective does not
always talk about formal interface specifications). Figure 2.42 shows the meta-model
cutout of the mapping artifacts.

RichComponentProperty

RealizeAllocate

Mapping

Flow

+ direction :FlowDirection

+ kind :FlowKind

Serv ice

+ direction :ServiceDirection

TextuallyRepresentedElement

+ textualRepresentation :String

MappingBlock

BlockOccurrence

MappingLink

RichComponent

FlowPin

+ direction :FlowDirection

+ kind :FlowKind

Serv icePin

+ direction :ServiceDirection

PortMappingPort

+ isConjugated :Boolean

«instanceRef»

+servicePin 0..1

+component

1

+part 0..*

«instanceRef»

+mappedFrom

1

«instanceRef»

+mappedTo

1

+component

1

+port 0..*

«instanceRef»

+flowPin 0..1

«isOfType»

+type 1

«instanceRef»

+flow 0..1

+mappingLink

0..*+mappingBlock

1

+formal 1

+formal

1+mapping

0..1«instanceRef»

+mappedTo

1

«instanceRef»

+mapped

1

+behavior 1

+mappingBlock 0..1

«instanceRef»

+service 0..1

Figure 2.42: Component mapping relations.

Component mapping allows to describe solutions of how component parts in dif-
ferent kinds of rich component models can be are mapped to each other. Component
mappings can be allocations and realizations. Since mappings become visible on data
correlations a mapping is only complete if there is a formal specification of how data
interaction points of one rich component model can be projected to corresponding data
interaction points of another rich component model.

Figure 2.43 illustrates how rich component models can be mapped to each other.
The way of description is the same for allocation and for realization. But the kinds
of mapped models are different. In case of a realization there are different models
on different abstraction levels mapped to each other. Such a mapping is useful when
describing how rich components are realized after a refinement in a new model i. e. log-
ical components being realized by concrete hard- and software components. In case of
an allocation there are models of different perspectives mapped i. e. logical perspec-
tive to technical perspective. A mapping like an allocation or a refinement links to
component parts of two models to identify the context for the mapping. The mapping
is formally described by a mapping block, with links to the concrete data interaction

73/135

Specification of an Architecture Meta-Model

points and a block occurrence to which represents the mapping behavior. This behav-
ior can be expressed by a statemachine which formally describes how the data of the
mapped interaction points behave to each other respective how the projection looks
like [BRR+10].

Abstraction-level i

f1 f2

Abstraction-level i+1

f1' f2'

Realization

e’

e

Logical
Perspective

f3

f4

Technical
Perspective

A
llo

catio
n

e’ e

r1

r2

Figure 2.43: Mapping relations: Allocation and Realization.

A mapping describes the mapping solution between two rich component properties
which belong to different component models such as allocations between component
models of different perspectives and realizations between component models of differ-
ent abstraction levels. The referenced rich component properties provide the context of
the mapping. These context references are needed for the identification of data items
which belong to the description of mapping. Since a mapping becomes visible with
the evaluation of corresponding interaction points a mapping is only complete if there
is a formal description of data mapping. This data mapping is formally provided by a
mapping block and can furthermore be given by a textual representation.

2.2.9.1 Mapping {abstract}

The abstract mapping meta-class represents an element which may connect to two
component instances of different abstraction levels or perspectives. An associated for-
mal specification can specify how to interpret the behavior of both ports. Note that the
references to Flow and Service exclude each other i. e. either there are references to
two flows, two services, or neither. Mapping has two concrete subclasses denoting the
relationships between perspectives (Allocate) or abstraction levels (Realize).

Generalizations: ReusableElement, TextuallyRepresentedElement

Aggregations

74/135

Specification of an Architecture Meta-Model

• formal : MappingBlock [1] The mapping block that formally defines the data
mapping of the referenced rich component properties.

• mapped : Mapping part [1] The rich component instance which provides the
mapped context.

• mappedTo : Mapping part [1] The rich component property which is the con-
text for the mapping target.

2.2.9.2 Allocate

The allocate meta-class is a concrete mapping meant to be used only between two
different perspectives on the same abstraction level.

Generalizations: Mapping

2.2.9.3 Realize

The realize meta-class is a concrete mapping meant to be used only between two dif-
ferent abstraction levels.

Generalizations: Mapping

2.2.9.4 Mapping part

Mapping part is an end reference of a mapping and references exactly one compo-
nent part. Mapping part is owned by a Mapping to reference both a rich component
property as a mapped context and a rich component property as a mapping target.
Figure 2.44 gives an overview over the mapping part element.

Mapping_part

ExpressionRichComponentProperty
PartContextReference

Mapping

+partIndex 0..1

«instanceRef»

+mapped 1

«instanceRef»

+mappedTo 1

«instanceRef.target»

+part
1

+mappedTo

1«instanceRef.root»

+partContextIndex

0..* {ordered}

+mapped

1«instanceRef.root»

«instanceRef.context»

+partContext

0..*
{ordered}

Figure 2.44: Mapping part.

Since often a concrete instance in a very specific context shall be referenced the path
of owning component paths must be given. Furthermore, rich component properties

75/135

Specification of an Architecture Meta-Model

are MultiplicityElements and can therefore be instantiated several times by assigning
a size to the RichComponentProperty. Such a multiple instantiation is denoted by only
one RichComponentProperty. When defining a mapping to a multiple component part,
the respective index of the part and also the indices of the context parts have to be
given.

Generalizations: PartContextReference

Aggregations

• partIndex : Expression [0..1] In case the size of the rich component property
associated is not 1, specifies the index in the multiple element.

Associations

• part : RichComponentProperty [1] The referenced component part.

2.2.9.5 PartContextReference {abstract}

PartContextReference is an abstract meta-class whose subclasses have the ability to
reference the concrete context of a rich component part. The part context is given
by an ordered set of referenced RichComponentProperties. These referenced Rich-
ComponentProperties are a path a component parts and provide the distinct context
information. The referenced part with the lower most index (0) is the part which con-
tains the property that shall be addressed by the concrete subclass. The referenced part
with the upper most index is the part that can be distinctively referenced by the part
context reference. If there are parts which are multiply instantiated, for all elements of
the part context path a part context index must be given. The order is the same as for
the part context path. Non-multiple instances have the index 0.

Aggregations

• partContextIndex : Expression [0..*] {ordered} An ordered set of indices de-
noting the exact part of multiple part instances in the part context path.

Associations

• partContext : RichComponentProperty [0..*] {ordered} An ordered set of rich
component properties denoting a concrete part context path.

76/135

Specification of an Architecture Meta-Model

2.2.9.6 MappingBlock

A mapping bock formally defines the mapping between structural interaction points
of rich component parts. Thus a mapping block contains a block occurrence which
defines how the interaction points behave to each other and therefore how data is pro-
jected between two rich component models. Furthermore, a mapping block owns a set
of mapping links in order to connect the mapped structural interaction points to the
pins that belong to the behaviour block which types the behaviour block occurrence of
the mapping block.

A mapping block is either owned by a mapping such as an allocation or a realize
link or, as a reusable element, declared by a declaration zone independent from an
allocation or a realization.

Generalizations: ReusableElement

Aggregations

• mappingLink : MappingLink [0..*] The mapping links that are owned by the
mapping block.

• behavior : BlockOccurrence [1] The behavior description of how mapped
interaction points relate to each other.

Associations

• mapping : Mapping [0..1] Description of the role of the associated meta-class.

2.2.9.7 MappingLink

Mapping links allow to link between mapped structural interaction points like flows
as well as services of rich component parts and pins of the block occurrence which
belong to a mapping block. In contract to behavior links mapping links do not have a
component scope and must therefore reference the exact part that has the interaction
points. Figure 2.45 gives a more detailed view on mapping links.

A maping link connects data interaction points such as flows and services with re-
spective flow and service pins that belong to the mapping behaviour description of
the mapping block. In contrast to behaviour links a mapping links do not belong to
the context of a rich component but to the context of a mapping block and therefore
reference interaction points of parts that belong to a specific part context.

Aggregations

• mapped : MappingLinkInteractionPointReference [1] A reference to the
mapped interaction point.

77/135

Specification of an Architecture Meta-Model

Flow

+ direction: FlowDirection
+ kind: FlowKind

Serv ice

+ direction: ServiceDirection

MappingBlock

BlockOccurrence

MappingLink

FlowPin

+ direction: FlowDirection
+ kind: FlowKind

Serv icePin

+ direction: ServiceDirection

MappingLinkInteractionPointReference

MappingLinkPinReference

+mappingLink

0..*+mappingBlock

1

+behavior 1

+mappingBlock 0..1
«instanceRef»

+flowPin 0..1

«instanceRef»

+servicePin 0..1

+pinEnd

1«instanceRef.root»

«instanceRef»

+flow 0..1

«instanceRef»

+service 0..1

+mapped

1«instanceRef.root»

Figure 2.45: MappingLink.

• pinEnd : MappingLinkPinReference [1] A reference to the pin which belongs
the behavior of the mapping block and shall be linked with the mapped interac-
tion point.

Associations

• mappingBlock : MappingBlock [1] The mapping block that owns the link.

2.2.9.8 MappingLinkInteractionPointReference {abstract}

MappingLinkInteractionPointReference is an abstract meta-class. Its specializations
reference the context of an interaction point which is given by a part, a part context
and a port. If a port is instantiated as a multiplicity element a port index must be given
to reference a specific port. A mapping link interaction point reference is owned as
one end of a mapping link to reference an interaction point such as a flow or a service.
Concrete subclasses are MappingLink flow and MappingLink service.

Generalizations: PartReference, PartContextReference

Aggregations

• portIndex : Expression [0..1] The index of the exact port if a port is a multiple
instance.

Associations

• port : Port [1] The port which is context of the referenced interaction point.

78/135

Specification of an Architecture Meta-Model

• mappingLink : MappingLink [1] The mapping link which owns the reference.

2.2.9.9 MappingLink flow

MappingLink flow is an end of a mapping link which references a specific flow of
a port that belongs to a concrete structural rich component part as depicted in Fig-
ure 2.46.

RichComponentProperty

Expression

Port

+ isConjugated: Boolean

PartReference

MappingLinkInteractionPointReferenceMappingLink

PartContextReference

MappingLink_flowFlow

+ direction: FlowDirection
+ kind: FlowKind

«instanceRef»
+flow 0..1

+mapped

1«instanceRef.root»
«instanceRef.context»

+port

1

+portIndex 0..1

+partContextIndex

0..*
{ordered}

+partIndex

0..1

«instanceRef.target»

+flow

1

«instanceRef.context»

+partContext

0..*
{ordered}

«instanceRef.context»

+part

0..1

Figure 2.46: MappingLink flow.

Generalizations: MappingLinkInteractionPointReference

Associations

• flow : Flow [1] The referenced flow.

2.2.9.10 MappingLink service

MappingLink service is an end of a mapping link which references a specific service
of a port that belongs to a concrete structural rich component part as depicted in Fig-
ure 2.47.

Generalizations: MappingLinkInteractionPointReference

Associations

• service : Service [1] The referenced service.

79/135

Specification of an Architecture Meta-Model

MappingLink_serv ice

RichComponentProperty

Expression

Serv ice

+ direction: ServiceDirection

Port

+ isConjugated: Boolean

PartReference

MappingLinkInteractionPointReferenceMappingLink

PartContextReference

«instanceRef»

+service 0..1

+mapped

1«instanceRef.root»
«instanceRef.context»

+port

1

+portIndex 0..1

+partContextIndex

0..*
{ordered}

+partIndex

0..1

«instanceRef.context»

+partContext

0..*
{ordered}

«instanceRef.context»

+part

0..1

«instanceRef.target»

+service

1

Figure 2.47: MappingLink service.

2.2.9.11 MappingLinkPinReference {abstract}

MappingLinkPinReference is an abstract meta-class. Its specializations reference the
behavior block occurrence of a mapping block as the context of a pin. A mapping
link pin reference is owned as one end of a mapping link to reference a pin such
as a flow or a service pin. Concrete subclasses are MappingLink flowPin and Map-
pingLink servicePin.

Associations

• mappingLink : MappingLink [1] The mapping link that owns the reference.

• blockOccurrence : BlockOccurrence [1] The block occurrence which is the
context of the referenced pin.

2.2.9.12 MappingLink flowPin

MappingLink flowPin is an end of a mapping link which references a specific flow pin
of the behaviour block occurrence of the mapping block which owns the mapping link
as depicted in Figure 2.48.

Generalizations: MappingLinkPinReference

Associations

• flowPin : FlowPin [1] The target flow pin of the mapping link.

80/135

Specification of an Architecture Meta-Model

MappingLink_flowPin

BlockOccurrenceMappingLinkPinReferenceMappingLink

FlowPin

+ direction: FlowDirection
+ kind: FlowKind

«instanceRef»

+flowPin 0..1

«instanceRef.target»

+flowPin

1

«instanceRef.context»

+blockOccurrence

1

+pinEnd

1«instanceRef.root»

Figure 2.48: MappingLink flowPin.

2.2.9.13 MappingLink servicePin

MappingLink servicePin is an end of a mapping link which references a specific ser-
vice pin of the behaviour block occurrence of the mapping block which owns the map-
ping link as depicted in Figure 2.49.

BlockOccurrence

Serv icePin

+ direction: ServiceDirection

MappingLink_serv icePin

MappingLinkPinReferenceMappingLink

«instanceRef.context»

+blockOccurrence

1

«instanceRef»

+servicePin 0..1

«instanceRef.target»

+servicePin

1

+pinEnd

1«instanceRef.root»

Figure 2.49: MappingLink servicePin.

Generalizations: MappingLinkPinReference

Associations

• servicePin : ServicePin [1] The target service pin of the mapping link.

2.2.9.14 PortMapping {abstract}

In order to specify mappings directly between ports and thus reduce the complexity of
the formal representation of the mapping there is an abstract meta-class PortMapping
which is a super-meta-class of PortAllocate and PortRealize. Figure 2.50 displays an
overview over port mappings.

Like the Mapping meta-class, PortMapping refers to a formal specification (Map-
pingBlock) and is a subclass of TextuallyRepresentedElement and ReusableElement.

81/135

Specification of an Architecture Meta-Model

TextuallyRepresentedElement

+ textualRepresentation :String

PortMapping

Port

+ isConjugated :Boolean

MappingBlock

PortMapping_port

PartContextReference

PartReference
Expression

PortAllocate PortRealize

ReusableElement

«instanceRef»

+mappedFrom

1

«instanceRef»

+mappedTo

1

«instanceRef.root»

+mappedFrom

1

«instanceRef.root»

+mappedTo

1

«instanceRef.target»

+port 1

+formal

1
+portIndex 0..1

+partIndex

0..1

+partContextIndex

0..* {ordered}

Figure 2.50: Port Mappings.

Generalizations: ReusableElement, TextualleRepresentedElement

Aggregations

• formal : MappingBlock [1] The mapping block that formally defines the data
mapping of the referenced rich component properties.

• mappedFrom : PortMapping port [1] The port of a rich component instance
which provides the mapped context.

• mappedTo : PortMapping port [1] The port of a rich component property
which is the context for the mapping target.

2.2.9.15 PortAllocate

PortAllocate is a concrete mapping solution between ports of rich component proper-
ties in rich component models of different perspectives in one abstraction level.

Generalizations: PortMapping

2.2.9.16 PortRealize

PortRealize is a concrete mapping solution between ports of rich component properties
in rich component models in different abstraction levels.

Generalizations: PortMapping

82/135

Specification of an Architecture Meta-Model

2.2.9.17 PortMapping Port

The mapping port reference PortMapping port is an end reference of a port mapping
and references exactly one port of one component part. PortMapping port is owned
by a PortMapping to refer to a rich component property as a mapped context, a rich
component property as well as port as a port mapping target.

Since often a concrete instance in a very specific context shall be referenced the path
of owning component paths must be given. Furthermore, rich component properties
are MultiplicityElements and can therefore be instantiated several times by assigning
a size to the RichComponentProperty. Such a multiple instantiation is denoted by
only one RichComponentProperty. When wanting to define a mapping to a multiple
component part, the respective index of the part and also the indices of the context
parts have to be given. The same applies for the referenced ports which also have to
have and index.

Generalizations: PartContextReference

Aggregations

• portIndex : Expression [0..1] In case the size of the port associated is not 1,
specifies the index in the multiple element.

Associations

• port : Port [1] The referenced port.

2.3 Requirements Meta-Model

This section deals with the SPESMM Requirements Meta-Model as part of the SPES
Meta-Model. The Requirements Meta-Model, which will be described in the follow-
ing, provides a general requirements concept with respec to the requirements engineer-
ing definitions from SPES ZP-AP2, Contracts as a means for formal system require-
ments as defined in HRC (SPEEDS) and furthermore a traceability concept.

2.3.1 Requirements

This section describes means to cover system specifications which are requirements
and goals. System specifications are system artifacts in a system design. They refer to
aspects such as safety, realtime or functional and can be related to a set of stakehold-
ers. There is a disinction between goals and requirements. Requirements are grouped
into process requirements and system requirements. Process requirements are textual
descriptions of how the design process shall look like. System requirements describe
what the system under design shall fulfill. They are structured as contracts. Being

83/135

Specification of an Architecture Meta-Model

a contract a system requirement consists of a set of assertions which are a guarantee
and optional strong and weak assumptions. A strong assumption characterizes the al-
lowed context of a component and a weak assumption considers integration context
possibilities. The guarantee states the guaranteed behavior for the given assumptions.
Assertions describe the assumed context and the guaranteed component behavior. As-
sertions have a textual description which can be informal or formal. An informal as-
sertion carries informal text. It can be based on a template which provides information
about its interpretation. A formal assertion carries a description which can be formally
interpreted. A goal denotes a design goal for a component. Its content is described by
an assertion. Figure 2.51 gives an overview.

SystemRequirement

+ isGraybox :boolean = false

Assertion

Requirement

+ rationale :String [0..*]

ProcessRequirement

Stakeholder

SystemArtefact

Aspect

TextuallyRepresentedElement

+ textualRepresentation :String

FormalAssertionInformalAssertion

TemplatableElement

Goal

TraceableSpecification

+guaranting0..1

+guarantee

1

+weaklyAssuming 0..1

+weakAssumption

0..1

+stronglyAssuming 0..1

+strongAssumption

0..1

+stakeholder

0..*

+aspect

1..*

+content

1

+goal 0..1

+realizedTemplate

0..1

Figure 2.51: Requirements.

Different kinds of requirements such as natural language requirements, boilerplates
or pattern based requirements can be covered using these structural requirement con-
cepts. For each system requirement the meaning of its content may be the same but
with different degree of formality. A natural language based user requirement simply
contains informal assertions. A boilerplate requirement is also covered by informal

84/135

Specification of an Architecture Meta-Model

assertion but these are realizations of assertion templates which describe the structure
and the relevant parameters of the boilerplate. Since a pattern provides a complete
formal requirement description, the content of pattern based requirements is covered
by formal assertions.

2.3.1.1 TraceableSpecification {abstract}

A traceable specification is a specification that is traceable during the development
process. Trace links such as Refine, Derive and Evaluate are defined to link traceable
specification. A traceable specification may reference a set of stakeholders which are
involved in the context of the respective requirement and. It may also reference a set
of aspects which it addresses.

TraceableSpecification is an abstract meta-class. Its sub-classes define con-
crete specifications. A TraceableSpecification is a SystemArtefact and therefore a
ReusableElement. It can be traced by using respective trace links. There are two
sub-classes, namely Goal and Requirement.

Generalizations: SystemArtifact

Associations

• aspect : Aspect [1..*] Specifies the aspects which are addressed by the speci-
fication.

• stakeholder : Stakeholder [0..*] Specifies the stakeholder who is responsable
for the traceable specification.

2.3.1.2 Requirement {abstract}

A requirement is defined as a statement that identifies a product or process operational,
functional, or design characteristic or constraint, which is unambiguous, testable or
measurable, and necessary for product or process acceptability (by consumers or in-
ternal quality assurance guidelines.

A requirement may reference aspects, which it is related to, and also a set of stake-
holders which are involved in the context of the respective requirement. The general
concept of a requirement provides a textual representation for the description of the
requirement. Furthermore, requirements are reusable and can be traced by using re-
spective trace links.

Requirement is an abstract class which. Concrete sub-classes provide explicit se-
mantics.

Generalizations: TraceableSpecification

85/135

Specification of an Architecture Meta-Model

Attributes

• rationale : String [0..*] The rationale(s) for the requirement (i. e. why the
requirement is present).

2.3.1.3 Stakeholder

A stakeholder represents a person which is involved in the development of a system
architecture. A stakeholder is an individual that has right, share, claim, or interest in a
system or in its ossession of characteristics that meet her/his needs and expectations.

Generalizations: ReusableElement

2.3.1.4 Goal

A goal denotes a design goal during a development process. Typically stakeholders
of a system development process define goals for the system design. Such a goal de-
scribes an optimization target for the development of a system and its design entities.
It declares intended functional and qualitative characteristica of the final system de-
sign. These characteristics are described by criteria for measurable properties which
shall be optimized. Typically aspects such as cost or weight are addressed. Based on
goals further system requirements can be derived which constrain the system design
and which lead to specific design decisions. Goals allow considerations about the us-
age of existing library components regarding the component’s properties, which are
addressed by the goals.

Typically a system or a design entity that is subject to a goal cannot be directly ver-
ified on reaching the goal or not. Therefore, a goal analysis requires a measure. The
measure is used for the evaluation of a system architecture. It allows arguing whether
and in which degree a goal is reached by the properties of a design solution. Typically
goals can be reached in different ways and therefore allow different architecture solu-
tions. Therefore goal measures can be used to choose a design solution among design
alternatives which reaches the goals in the best way.

A Goal is a specification which is traceable. The content of a goal is defined by an
assertion. Goals can be refined into more formal goals. System requirements can be
derived from goals. A Rich Component can be subject to goal which is denoted by a
satisfy link.

Generalizations: TraceableSpecification

Aggregations

• content : Assertion [1] Specifies the assertion that is owned by the system
requirement and which defines the content of the goal.

86/135

Specification of an Architecture Meta-Model

2.3.1.5 ProcessRequirement

A process requirement is a requirement related to the engineering (development/main-
tenance) process and imposed by corporate policy or practice. Process requirements
include compliance with national, state or local laws; administrative requirements such
as physical security; and specific work directives.

By now a process requirement can be textually described.

Generalizations: Requirement

2.3.1.6 SystemRequirement

System requirements encapsulate the internals of a component and abstract dynamics
constraints by providing an abstract characterization of the component. Traceability
regarding system requirements will be described in Section 2.3.2.

The system requirement specification is given in terms of a triple of a weak assump-
tion, a strong assumption, and a promise, each of which is specified by an assertion
owned by the system requirement. It states that the environment of a satisfying rich
component must behave as assumed. Moreover, under such circumstance, the rich
component itself behaves as promised.

Generalizations: Requirement

Aggregations

• strongAssumption : Assertion [1] Specifies the assertion that is owned by the
system requirement as strong assumption.

• weakAssumption : Assertion [1] Specifies the assertion that is owned by the
system requirement as weak assumption.

• promise : Assertion [1] Specifies the assertion that is owned by the system
requirement as promise.

2.3.1.7 Assertion {abstract}

An assertion specifies a logical property. It is on one hand informally given by state-
ments in English (specified by the textualRepresentation attribute inherited from Tex-
tuallyRepresentedElement). An assertion can be formal or informal.

Assertion is an abstract meta-class. Its specializations have concrete semantics.
Sub-classes are InformalAssertion and FormalAssertion.

Generalizations: TextuallyRepresentedElement, TemplateableElement

87/135

Specification of an Architecture Meta-Model

Associations

• stronglyAssuming : SystemRequirement [0..1] If present, specifies the system
requirement that owns the assertion as its strong assumption.

• weaklyAssuming : SystemRequirement [0..1] If present, specifies the system
requirement that owns the assertion as its weak assumption.

• guaranting : SystemRequirement [0..1] If present, specifies the system re-
quirement that owns the assertion as its promise.

2.3.1.8 InformalAssertion

An informal assertion provides a statement in an informal language (specified by the
textualRepresentation attribute inherited from TextuallyRepresentedElement) for an
assumption or for the promise of a system requirement.

As a templatable element an informal assertion can be defined as a template. Such
a template may define a set of parameters which declare variable properties of the
informal assertion. Being a reusable element such an informal assertion template can
be stored in any declaration zone, i. e. a package. Realizations of such a template may
be owned by system requirements. A realization references the respective template
assertion and defines in parameter substitutions the values for the variable properties
— the parameters that are declared in the template.

Generalizations: Assertion, ReusableElement

2.3.1.9 FormalAssertion

A formal assertion provides a formal definition of an assumption or a promise of a
system requirement. This can be formally given by a block occurrence covering the
textual representation.

Generalizations: Assertion

Aggregations

• formal : BlockOccurrence [1] Specifies the formal presentation of the asser-
tion.

2.3.2 Requirements Traceability

The link types to be introduced cover relevant traceability concepts in existing meta-
models like SysML [Obj08a], EAST-ADL2 [ATE08], or in the traceability reference
model by Jarke and Ramesh [RJ01]. Regarding the contained traceability elements,

88/135

Specification of an Architecture Meta-Model

there are only few differences between these meta-models. In fact many approaches
are related to each other. The MeMVaTEx requirements meta-model uses traceability
links from SysML and the abstraction layers from EAST-ADL2. The EAST-ADL2
traceability links are very similar to SysML. It is hoped that more requirements towards
traceability will origin from ZP-AP2 in the future. Figure 2.52 shows an overview.

RichComponent

SystemRequirement

+ isGraybox :boolean = false

Satisfy
Deriv e

+ type :DeriveKind

Refine

Requirement

+ rationale :String [0..*]

SystemArtefact

Deriv eKind

 AND

 OR

Ev aluate

VVCase

VVProcedure

+ specification :String [0..1]

+ specificationType :String [0..1]

TraceableSpecification

Goal

ProcessRequirement
+satisfies

0..*

+refinedReq

1

+case 1

+procedure

1..*

+derivedReq

1..*

+derivedFrom 1..*

+subjectTo

0..*

+evaluatedByVVProcedure
0..*

+evaluatedByCase

1..*

+evaluates

1..*

+component1..*

+refinedBy

1..*

Figure 2.52: Traceability.

2.3.2.1 Refine

A refinement operation adds detail to an abstraction while preserving the semantics of
the abstraction. The result of applying a refinement operation to an abstract item (say
requirement AR1) is a new item (say RR1), such that RR1 has more detail than AR1,
but RR1 has the same intent and meaning as what AR1 specifies. This link is e. g. used
to trace requirement formalisations.

The refinement link represents a specific dependency between requirements on dif-
ferent level of abstractions where one or multiple target requirements add further detail
to the source requirement. The existence of the resulting requirements is completely

89/135

Specification of an Architecture Meta-Model

defined by the superior source requirement. If the latter is changed, the resulting re-
quirements of the refinement need to be changed, too.

Generalizations: ReusableElement

Associations

• refinedReq : TraceableSpecification [1] The source specification that is re-
fined.

• refinedBy : TraceableSpecification [1..*] The resulting specification set that
refines the source requirements.

2.3.2.2 Derive

This link is used to indicate that one or more new requirements are derived from a
design decision or certain analysis results (e. g. realtime analysis).

Requirements are derived from existing requirements, certain design decisions or
analysis results, where the modification of the requirement or the change of a made
design decision could have an impact on the derived requirements.

Generalizations: ReusableElement

Associations

• derivedReq : TraceableSpecification [1..*] The set of specifications that are
derived from the source spcifications.

• derivedFrom : SystemArtefact [1..*] The set of source system artifacts (Re-
quirement is a special of SystemArtefact).

2.3.2.3 Satisfy

This link between components (component of different abstraction layers, source code)
and system requirements indicates that the artifacts shall satisfy the requirements it is
linked to.

This link indicates that the components connected to the requirement(s) shall sat-
isfy the requirement(s). The justification of this link is done by verification means. A
change to the requirement(s) could have an impact on the components and therefore
lead to a complete re-verification whether the component still satisfies the require-
ment(s).

Generalizations: ReusableElement

90/135

Specification of an Architecture Meta-Model

Associations

• satisfies : SystemRequirement [1..*] The set of system requirements that shall
be satisfied by the set of components.

• subjectTo : Goal [0..*] The set of goals which shall be reached by the compo-
nent definition.

• component : RichComponent [1..*] The set of components that shall satisfy
the defined set of system requirements.

Constraints Satisfy links are subject to the following constraints:

1. The satisfied Contract must be a SystemRequirement.

2.3.2.4 Evaluate

This link between V&V Cases and requirements indicates that the V&V Case veri-
fies/validates the requirement. As VVCase is an abstract concept, it can represent both
validation and verification procedures.

This link indicates that the VVCases connected to the requirement(s) shall verify/-
validate the requirement(s). The question whether the VVCases really verifies/vali-
dates the requirement(s) is a different topic. Nonetheless, a change to the require-
ment(s) could have an impact on the results of the verification/validation and therefore
lead to a complete re-verification/validation.

Generalizations: ReusableElement

Associations

• evaluates : TraceableSpecification [1..*] The set of specifications that is veri-
fied or validated.

• evaluatedByCase: VVCase [1..*] The set of VVCases that performs the vali-
dation/verification.

• evaluatedByProcedure : VVProcedure [0..*] The set of VVProcedures that
performs the validation/verification.

2.4 Safety Aspects of the Meta–Model

This section deals with the safety aspects of the meta-model, first the verification and
validation parts second with the failure modeling parts.

91/135

Specification of an Architecture Meta-Model

2.4.1 Verification and Validation

This section describes the part of the SPES Meta-Model that deals with the represen-
tation of verification and validation artifacts and results. The V&V package is adopted
with some modifications from EAST-ADL2.1 and generally follows the same working
hypothesis as EAST-ADL2: Many different verification and validation (V&V) tech-
niques, methods and tools are applied during the development of electrical/electronic
systems. Different techniques are applicable at different abstraction levels. Also,
choosing a technique depends on the properties being validated and/or verified and
which language was used to specify them. Furthermore, each partner in a project may
develop and employ his own V&V processes and activities, what makes it impossible
to define a common set of verification and validation types in the SPES Meta-Model
core.

The current set of V&V concepts shown in Figure 2.53 describe the common parts of
V&V techniques that allow the organization of V&V and the storage of V&V results.
The main modifications compared to EAST-ADL are:

• Description of V&V categories to define what kind of V&V activity produced
the VVCase. This could be e. g. a safety analysis, a weight assessment or any
kind of requirement quality assurance technique.

• Concrete distinction between validation and verification, where validation rep-
resents all kind of requirement related quality assurance (unambiguity check,
consistency check, etc.).

ValidationCaseVerificationCase
VVTarget

RichComponent

VVProcedure

VVStimuli

VVLog

+ date: String

+ status: VVStatus

VVOutcome

VVStatus

 Pass

 Fail

 Error

 Pending

 Inconclusive

 Suspect

VVCategory

VVCase

ValidationProcedure VerificationProcedure

RequirementOutcome ValueOutcome

Requirement

+ rationale: String [0..*]

Expression

+subject

1..*

+procedure

0..1

+stimuli 0..*

+category

1

+case

1

+procedure

1..*

+case
1

+log

0..*

+log

0..*

+procedure

1

+log 0..1

+actualOutcome 0..*

+realizedElement0..*

+value

1

+target

0..*

+requirement 1..*
+value 1

+procedure

0..1

+intendedOutcome0..*

Figure 2.53: Verification and Validation.

To illustrate the main concepts and their usage, the following two usage scenarios
are described:

92/135

Specification of an Architecture Meta-Model

Representation of Requirement Quality Assurance (e. g. manual review, au-
tomatic checks, etc.) In the first usage example (see Figure 2.54), the description
and storage of requirement validation results with the V&V meta-model is shown.
Requirement validation focusses either on characteristics of single requirements like
unambiguity, atomic, verifiable, necessary, (internal) consistency, etc. or on character-
istics of requirement sets like (external) consistency or completeness. The following
figure shows the representation of such checks using the two single requirement checks
unambiguity and verifiable and a consistency check on a set of requirements.

ValdiationCase::
RequirementReview

SystemRequirement::
Req1

SystemRequirement::
Req2

ValdiationProcedure::
Unambiguity Check

ValdiationProcedure::
Unambiguity Check

ValdiationProcedure::
Consistency Check

ValdiationProcedure::
Verifiability Check

ValdiationProcedure::
Verifiability Check

Evaluate

Evaluate

Evaluate

Evaluate

Evaluate

Figure 2.54: Requirement Quality Analysis represented with VV concepts.

Each time the checks are performed, the result is stored using the VVLog concept
(not shown in the figure). The check itself can be manually or automatically. The
concrete V&V method in use does not matter.

Architecture Assessment The next usage example describes the representation of
analyses for architecture assessments. On the top, Figure 2.55 shows the description
of non functional architecture assessments like cost or weight. For each cost or weight
requirement, there is a defined verification procedure. Each of these verification pro-
cedure uses a registered metric/model to assess the as-is value of the requirement and
stores the result in using VVLog and VVActualOutcome. The metric itself is marked
as dashed lines as this is not directly part of the core V&V meta-model and has to
be provided by an analysis service/meta-model extension. Below these non functional
assessments, Figure 2.55 also indicates the evaluation of architecture mapping con-
straints. They are also described using VerificationProcedure and results are stored
using VVLog and VVActualOutcome (not shown in the figure).

The following section introduces all elements of the V&V package and the last sec-
tion gives some usage example on how to represent different kind of V&V activities.

93/135

Specification of an Architecture Meta-Model

VerificationCase::
NonFunctional

ArchitectureAssessment

CostRequirement::
Req1

WeightRequirement::
Req2

VerificationProcedure::
Cost Assessment

VerificationProcedure::
WeightAssessment

Evaluate

Evaluate

VerificationCase::
ArchitectureConstraintsChecking

ValdiationProcedure::
Constraint Check

ValdiationProcedure::
ConstraintCheck

Constraint::
Constraint1

Constraint::
Constraint2

Metric::
Cost Metric/Model

Metric::
Weight Metric/Model

uses

uses

Evaluate

Evaluate

Analysis Method

Figure 2.55: Architecture Assessments represented with VV concepts.

2.4.1.1 VVCase

A VVCase is an abstract representation of an overall V&V effort. It is typed by a
VVCategory and stores the results of each “execution” of a corresponding VVProce-
dure using the VVLog concept. VVCase is a SystemArtefact which may contain a
textal description and can be stored in a package.

Generalizations: SystemArtefact

Aggregations

• vvProcedure : VVProcedure [1..*] The VVProcedures for this VVCase.

• vvLog : VVLog [0..*] The VVLogs captured while executing this VVCase.

Associations

• category : VVCategory [0..1] The category describes the type of the VVCase
(e. g. HIL Testing, Safety Analysis, Requirement Consistency Check, etc.)

2.4.1.2 VVStatus {Enumeration}

An enumeration depticting all possible status a VVProcedure can have. This status is
attached to a VVLog to give information about the status at a given date.

94/135

Specification of an Architecture Meta-Model

EnumerationLiterals

Pass Means that the V&V procedure was executed successful with the specified in-
tended outcome.

Fail Means that the V&V procedure was executed wrong i. e. the specified intended
outcome was not met.

Error An error occurred during execution of the V&V procedure, i. e. the specifica-
tion/implementation of the procedure was wrong.

Pending The V&V procedure is specified, but it was not yet executed.

Inconclusive The V&V procedure did not deliver a result, it can not be stated whether
it passed or failed.

Suspect Due to a change, the V&V procedure itself and/or its result is possibly not
valid any more and needs to be checked/rerun.

2.4.1.3 ValidationCase

A ValidationCase represents a validation effort to analyze whether we build the right
product, i. e. whether the requirements are valid (consistent, complete, correct, etc.)
as well as confirming that the product, as provided (or as it will be provided), will
fulfil its intended use. Validation (of a product) ensures that the correct product is
built. It may be performed in the operational environment or in a simulated operational
environment.

Generalizations: VVCase

Constraints Validation cases are subject to the following constraints:

1. A ValidationCase can only own ValidationProcedures.

2.4.1.4 VerificationCase

VerificationCase represents a verification effort for design, implementation and prod-
uct verification. A VerificationCase specifies concrete test subjects and targets and
provides stimuli and the expected outcome on a concrete technical level. It aims at
confirming that work products properly reflect the requirements specified for them.
Verification (of a product) ensures that a product is correctly built.

Generalizations: VVCase

95/135

Specification of an Architecture Meta-Model

Associations

• target : VVTarget [0..*] The VVTargets for this VerificationCase. See associ-
ation “subject” for more information.

• subject : RichComponent [1..*] The elements that are being verified and val-
idated by this VerificationCase. Usually this will be a subset of those elements
which are realized by the VVTarget(s) of the VerificationCase; but this need not
always be the case. The difference between the vvSubjects and the entities which
are realized by the case’s VVTarget(s), is that the vvSubjects are related to the
primary, overall objective of the VerificationCase, while the realized entities can
comprise more than these. For example:

(a) For technical reasons additional entities need to be realized only to permit
the testing of the entities of actual interest or

(b) If a VVTarget is reused among many VerificationCase and therefore realizes
more entities than are actually being tested by any single VerificationCase.

Constraints Verification cases are subject to the following constraints:

1. A VerificationCase can only own VerificationProcedures.

2.4.1.5 VVProcedure

VVProcedure represents an individual task in a verification effort (represented by a
VerificationCase), which has to be performed in order to achieve that effort’s overall
objective. A VVProcedure is defined with a concrete testing environment in mind and
provides stimuli and the expected outcome of the procedure in a form which is directly
applicable to this testing environment.

Generalizations: NamedElement

Aggregations

• vvStimuli : VVStimuli [0..*] Set of involved stimuli.

• intendedOutcome : VVOutcome [0..*] Set of intended outcomes.

Associations

• case : VVCase [1] The owning VVCase.

96/135

Specification of an Architecture Meta-Model

2.4.1.6 VVTarget

VVTarget represents a concrete testing environment in which a particular V&V activ-
ity can be performed. This can be physical hardware or it can be pure software in case
of a test by way of design level simulations. Usually, a VVTarget will be a realiza-
tion of one or more elements. However, there are cases in which this is not true, for
example when a VVTarget represents parts of the system’s environment. Therefore
the association to element has a minimum cardinality of 0. VVTargets can be reused
across several ConcreteVVCases.

Generalizations: ReusableElement

Associations

• realizedElement : RichComponent [0..*] The rich component this VVTarget
realizes.

2.4.1.7 VVStimuli

VVStimuli represents the input values of the testing environment represented by
VVTarget in order to perform the corresponding VVProcedure. The input values must
be provided in a form that is directly applicable to the VVTarget(s) defined for the
containing VerificationCase.

Aggregations

• value : Expression [1] The value of the VVStimuli.

2.4.1.8 VVLog

VVCase represents the description of a V&V effort and thus provides all necessary in-
formation to actually perform this V&V effort. However, it does not represent the ac-
tual execution of the effort. This is the purpose of the VVLog. Each VVLog meta-class
represents an execution of a VVCase. For example, if the HIL test of the wiper system
with a certain set of stimuli was performed on Friday afternoon and, for checkup, again
on Monday, then there will be one VVCase describing the HIL test and two VVLogs
describing the test results from Friday and Monday respectively.

Attributes

• date : String [1] Date and time when this log was captured.

• status : VVStatus [1] The status of the VVCase that owns this log.

97/135

Specification of an Architecture Meta-Model

Aggregations

• actualOutcome : VVOutcome [0..*] The actual outcome of the VVCase.

Associations

• case : VVCase [0..1] The VVCase owning this log.

• procedure : VVProcedure [1] The associated procedure.

2.4.1.9 VVOutcome {abstract}

VVOutcome represents a test output. This output can be intended for a specific VVPro-
cedure or be an actual result belonging to a VVLog. Being an intended outcome of
a VVProcedure a VVOutcome denotes an intended result of an inididual test task. In
case of an actual test result the VVProcedure that is referenced by the VVLog denotes
the task that is executed and which leads to the actual outcome. An actual test outcome
should fulfill the intended outcome being referenced by a VVProcedure. As a test out-
put in a verification step a VVOutcome can be produced by a testing environment as
represented by VVTarget when triggered by the VVStimuli of the VerficationProce-
dure that is referenced by the VVLog.

VVOutcome is an abstract meta-class. Concrete subclasses are RequirementOut-
come, CutSet, and ValueOutcome.

Associations

• log : VVLog [0..1] Denotes the VVLog to which the VVOutcome belongs
being a actual test outcome.

• procedure : VVProcedure [0..1] Denotes the VVProcedure which has the
VVOutcome as an intended test outcome.

Constraints VVOutcomes are subject to the following constraints:

1. A VVOutcome can either belong to a VVLog as an actual outcome or to a
VVProcedure as an intended outcome.

2.4.1.10 RequirementOutcome

RequirementOutcome is a VVOutcome referring to a set of requirements.

Generalizations: VVOutcome

98/135

Specification of an Architecture Meta-Model

Associations

• requirement : Requirement [1..*] The set of requirements to which the actual
outcome referes.

2.4.1.11 ValueOutcome

ValueOutcome is a VVOutcome with a specific value.

Generalizations: VVOutcome

Associations

• value : Expression [1] The value of the actual outcome.

2.4.1.12 VVCategory

A VV Category describes a verification or validation kind. This can be requirement
validation analyses like requirement consistency, completeness or any other require-
ment quality attribute as well as analysis like HIL testing, requirement based testing
or safety analyses. VVCategories depend on the concrete V&V process in a company
and therefore need to be provided as a V&V category library.

Generalizations: ReusableElement

2.4.2 Safety Extension

The safety concept of the SPESMM provides means for the analysis of potential com-
ponent failures. Figure 2.56 gives an overview.

2.4.2.1 SafetyCase

A safety case denotes a safety analysis for a specific component as its subject.

Generalizations: VVCase

Associations

• subject : RichComponent [1] The rich component that is subject to the safety
case.

99/135

Specification of an Architecture Meta-Model

FailureCondition

Expression

SafetyCase

VVCase

SafetyAnalysisProcedure

+ fai lureSeverity: Fai lureSeverityKind

SafetyAnalysisAssumption

VVProcedure

VVLog

+ date: String

+ status: VVStatus

CutSet

VVOutcome

RichComponent

BlockOccurrence

FailureDetection

+ detected: boolean

+ kind: FailureDetectionKind [0..1]

FailureDetectionKind

 before

 during

 after

VVCategory

+failure0..*

+combination 0..1

+environmentCondition 0..1

+fai lureRate

0..1

+subject 1

+category 1

+case

1

+procedure

1..*

+case

1
+log

0..*

+failureCondition

0..*+component

1

+failureCondition 1..*

+phase

0..1

+assumption 0..1

+phase
0..1

+procedure 0..1

+intendedOutcome

0..*

+log

0..*

+procedure

1

+log 0..1

+actualOutcome 0..*

+failure

0..*

+formal

0..1

+failureCondition 0..1

+detection

0..1

Figure 2.56: Safety concepts.

2.4.2.2 SafetyAnalysisProcedure

A safety analysis procedure is an individual safety task on the occurrence of specific
failures. In an analysis these failures are top level events. Other failure conditions can
be referenced as base failures which can potentially lead to these top level events. A
safety analysis procedure can have a safety analysis assumption which qualifies the
assumed occurrence of the failures. Furthermore, a safety analysis procedure can have
intended outcomes which can be quantitative value or a qualitative value as well as an
intended cut set. These intended outcomes are described as follows:

quantitative A real value expressing a quantitative safety requirement on the quan-
tification of the failure occurrence. The value denotes an upper bound for the
propability of the first occurrence of the particular failure within a specific time
span. (i. e. “10−9 per hour”)

qualitative A natural number expressing a qualitative safety requirement on the size
of the allowed minimal cut set which corresponds to the level of severity. A
value of 1 means that no single failure shall lead to the top level event (TLO), a
value of 2 means that no double failure shall lead to the TLO and so on.

cut set An intended cut set.

100/135

Specification of an Architecture Meta-Model

Generalizations: VVProcedure

Attributes

• failureSeverity : FailureSeverityKind [1] Safety impact classification of a fail-
ure.

Aggregations

• assumption : SafetyAnalysisAssumption [0..1] The assumption on the occur-
rence of a failure for an individual safety analysis procedure.

Associations

• failureCondition : FailureCondition [1..*] A set of failure conditions which
describe top level events.

• failure : FailureCondition [0..*] A set of basis failures which can potentially
lead to the top level events.

2.4.2.3 SafetyAnalysisAssumption

A safety assumption a qualifying assumption about the circumstances of failures in a
particular safety analysis procedure, such as the operational phase, a classification of
the detection detection, environment conditions for the particular failure condition or
combinations with other failure conditions.

Aggregations

• detection : FailureDetection [0..1] A temporal classification for the detection
of the failure (i. e. ‘be f ore speed = 80 km

h reached”).

Associations

• environmentCondition : Expression [0..1] A value domain classification on
external properties that might affect severity, detection etc. of the failure (i. e.
“acceleration >−3 m

s2 ”).

• combination : Expression [0..1] Denotes combinations with other failures that
must also occure to make the particular failure critical (i. e. “HandbrakeCon-
troller loss or FullThrottle commission”)

• phase : Expression [0..1] The operational phase in which the failure occurs
(i. e. “Landing”).

101/135

Specification of an Architecture Meta-Model

2.4.2.4 CutSet

A cut set denotes a set of failures as a result of a SafetyCase.

Generalizations: VVOutcome

Associations

• failure : FailureCondition [0..*] The failures of the cut set.

2.4.2.5 FailureDetection

A failure detection provides information about the detection of a failure.

Attributes

• detected : Boolean [1] Denotes whether a failure is detected or not.

• kind : FailureDetectionKind [0..1] Denotes a temporal classification for the
detection of a failure in combination with a phase description.

Aggregations

• phase : Expression [0..1] An operational phase description related to the fail-
ure detection kind denoting a temporal classification for the detection of a fail-
ure.

2.4.2.6 FailureDetectionKind {Enumeration}

A failure detection kind provides a temporal classification for the occurrence of a fail-
ure in combination with an operational phase description.

EnumerationLiterals

before Denotes the detection of a failure before a specific phase.

during Denotes the detection of a failure during a specific phase.

after Denotes the detection of a failure after a specific phase.

102/135

Specification of an Architecture Meta-Model

2.4.2.7 FailureSeverityKind {Enumeration}

The severity kind classifies the impact of a failure. Concrete values to be used in a
development process are defined by domain requirements such as ARP. FailureSeveri-
tyKind provides a generic classification and therefore defines five severity kinds. Four
of these kinds are compliant to the classification of ARP, EASA CS-25 (Certifica-
tion Specification for Large Aeroplanes) and EASA AMC25.1309 (System design and
analysis). Furthermore, a failure can have no safety impact.

EnumerationLiterals

none No safety impact.

minor Minor safety impact which is required to be probable.

major Major safety impact which is required to be remote.

hazardous Hazardous safety impact which is required to be extremely remote.

catastrophic Catastrophic safety impact which is required to be extremely improba-
ble.

2.5 Data Type Specification

A data type describes values which data may have. The SPES Meta-Model provides a
means to denote primitive types and enumerations as well as complex data types like
records or arrays. Furthermore, a primitive type can be specified more precisely and it
is possible to denote units and dimensions. Figure 2.57 gives an overview.

2.5.1 Data Types

This section describes the data type concepts which are provided by the SPES Meta-
Model.

2.5.1.1 Enumeration

An enumeration is a data type whose instances are enumerated in the model as enu-
meration elments (also called literals).

Generalizations: DataType

Aggregations

• element : EnumerationElement [1..*] The set of elements that characterizes
the enumeration.

103/135

Specification of an Architecture Meta-Model

DataTypeEnumerationElement Field

Enumeration Primitiv eType

+ kind: PrimitiveTypeKind [0..1]

Array Record

UnitDimension
Expression

Primitiv eTypeKind

 integer
 real
 string
 boolean
 voidType

+elementType

1

+size 1

«isOfType»

+type

1

+dimension

1

+enumeration 1

+element 1..*
{ordered}

+precision

0..1

+nbBits

0..1

+lowerBound

0..1+upperBound

0..1

+record

1

+field

1..*

+unit 0..1

Figure 2.57: Data types.

2.5.1.2 EnumerationElement

An enumeration element denotes a user-defined value for an enumeration. The value
is characterized by its name.

Generalizations: NamedElement

Associations

• enumeration : Enumeration [1] The enumeration that owns this element.

2.5.1.3 Record

A record is a data type that is composed of a fixed number of fields. Each field is
identified by a name and is associated to a data type. A value of a record is composed
of values for every field, where each value conforms to the type of its corresponding
field. Values of records can be specified via the meta-class RecordInstance.

Generalizations: DataType

Aggregations

• field : Field [1..*] The non-empty set of fields owned by the record.

104/135

Specification of an Architecture Meta-Model

Constraints Recordss are subject to the following constraints:

1. All fields in a record must have distinct names:

context Record inv uniqueFieldNames:
self . field→isUnique(field | field .name)

2.5.1.4 Field

A field represents a part of a record.

Generalizations: NamedElement

Associations

• type : DataType [1] The data type of the field.

• record : Record [1] The record that owns the field.

2.5.1.5 Array

An array is a composite type whose values are a sequence of elements of the same data
type. Individual elements are accessed by their position in the array, from 0 to size−1,
as defined by meta-class ArrayNavigation.

Generalizations: DataType

Aggregations

• size : Expression [1] The size of the array.

Associations

• elementType : DataType [1] The data type of all the elements in the array.

Constraints Arrays are subject to the following constraints:

1. The size expression must be of integer type:

context Array inv typeIsInteger:
self . size .type(). isInteger()

2. The size expression must be statically evaluable to a non-negative, non-null
value.

105/135

Specification of an Architecture Meta-Model

2.5.1.6 PrimitiveType

A primitive type is a data type which does not have any relevant substructure. A prim-
itive type may have an upper bound and a lower bound to explicitly define the upper
most and the lower most value of the type’s range. It may define an implementation
size on the hosting machine, in terms of number of bits. It may also define the preci-
sion of the numeric value that it represents and finally, a primitive type may be typed
by a unit and a dimension.

A primitive type may have a kind. A kind determines what values conform to the
primitive type. The possible kinds are Boolean, Integer, Real, String, and Void. Prim-
itive types are therefore organized in families of a same kind. Two types of the same
family are considered conformant. For example, an expression whose type is of kind
Integer can always be the right-hand side of an assignment where the left-hand side
is also of kind Integer, regardless of the name, unit or precision of the types. In addi-
tion, in that case the left-hand side can also be of kind Real because the family of kind
Integer is considered to be a subtype of the family of kind Real.

Generalizations: DataType

Attributes

• kind : PrimitiveTypeKind [1] Specifies the kind of the primitive type.

Aggregations

• upperBound : Expression [0..1] The upper bound that defines the upper most
value in the range of this type.

• lowerBound : Expression [0..1] The lower bound that defines the lower most
value in the range of this type.

• precision : Expression [0..1] The precision that defines the smallest amount
of information (quantum) that this type can express.

• nbBits : Expression [0..1] The size of the type in terms of number of bits.

Associations

• unit : Unit [1] The unit of measurement for this primitive type.

106/135

Specification of an Architecture Meta-Model

Operations

• isBoolean() : Boolean Returns true iff the tested data type is of kind Boolean.
It is redefined from DataType.

context PrimitiveType: : isBoolean(): Boolean
post: result = (self .kind = PrimitiveTypeKind: :boolean)

• isInteger() : Boolean Returns true iff the tested data type is of kind Integer. It
is redefined from DataType.

context PrimitiveType: : isInteger(): Boolean
post: result = (self .kind = PrimitiveTypeKind: : integer)

• isString() : Boolean Returns true iff the tested data type is of kind String. It is
redefined from DataType.

context PrimitiveType: : isString(): Boolean
post: result = (self .kind = PrimitiveTypeKind: : string)

• isReal() : Boolean Returns true iff the tested data type is of kind Real. It is
redefined from DataType.

context PrimitiveType: : isReal(): Boolean
post: result = (self .kind = PrimitiveTypeKind: : real)

• isVoid() : Boolean Returns true iff the tested data type is of kind Void. It is
redefined from DataType.

context PrimitiveType: : isVoid(): Boolean
post: result = (self .kind = PrimitiveTypeKind: :voidType)

• conformsTo(DataType) : Boolean Determines whether the primitive type con-
forms to another data type. When kinds are defined, a primitive type conforms to
a primitive type of the same kind or of a “super-kind”, where Real is a super-kind
of Integer.

context PrimitiveType: :conformsTo(other: DataType): Boolean
post: result =

i f (other.oclIsKindOf(PrimitiveType)) then
let otherKind : PrimitiveTypeKind =

other.oclAsType(PrimitiveType).kind
in self .kind = otherKind or

(self .kind = PrimitiveTypeKind: : integer and
otherKind = PrimitiveTypeKind: : real) or

(self .kind.oclIsUndefined() or otherKind.oclIsUndefined())
else

false
endif

107/135

Specification of an Architecture Meta-Model

2.5.1.7 PrimitiveTypeKind {Enumeration}

An enumeration that defines the kinds supported by primitive types (see Primi-
tiveType). A kind identifies what values conform to a primitive type.

EnumerationLiterals

integer Integer values.

real Real values.

string String values.

boolean Boolean values.

voidType No value. This kind allows typing pure event flows (event flows which
carry no value).

2.5.1.8 Real {PrimitiveType}

Real is a primitive type denoting floating point values.

2.5.1.9 Unit

This class describes the unit of measurement for a given type. It is typed by a dimen-
sion. It inherits from ReusableElement (which inherits from NamedElement), thus the
dimension is defined using the name attribute.

Unit is a qualifier of measured values in terms of which the magnitudes of other
quantities that have the same physical dimension can be stated. A unit often relies on
precise and reproducible ways to measure the unit. For example, a unit of length such
as meter may be specified as a multiple of a particular wavelength of light. A unit may
also specify less stable or precise ways to express some value, such as a cost expressed
in some currency, or a severity rating measured by a numerical scale.

Generalizations: ReusableElement

Attributes

• convFactor : Real [0..1] This parameter allows referencing measurement units
to other base units by a numerical factor.

• convOffset : Real [0..1] This parameter allows referencing measurement units
to other base units by applying an offset value to them.

108/135

Specification of an Architecture Meta-Model

Associations

• dimension : Dimension [1] Specifies the dimension of the unit.

• baseUnit : Unit [0..1] Represents the base unit by which a derived measure-
ment unit is created. Basic units do not require this field to be set.

2.5.1.10 Dimension

A dimension is used to type a unit like for example length is the dimension for the unit
meter.

It inherits from ReusableElement (which inherits from NamedElement) thus the di-
mension is defined using the name attribute.

Generalizations: ReusableElement

2.6 Technical Elements

Among other tasks of ZP-AP3 was the specification of a meta-model to allow mod-
eling of technical elements such as hardware units, scheduling properties and means
to allocate software components to hardware components. This mostly describes the
logical and technical perspectives as introduced in the last section. In this section we
describe these means to state scheduling properties and to model hardware elements.

2.6.1 Hardware Elements

This section will introduce some hardware elements like processors, busses, actuators
or sensors. Figure 2.58 gives an overview.

As shown in the diagram, the hardware elements are specials of the model compo-
nents introduced in Section 2.1 and 2.2.

2.6.1.1 Receiver

This element represents a communication part of a technical component which can
receive data from a Transmitter or Transceiver.

Generalizations: TechnicalComponent

Aggregations

• rxDataRate : Expression [1] The data rate with wich this receiver can receive
data (e. g. 3 Mb/s).

109/135

Specification of an Architecture Meta-Model

HWComputingUnitReceiv er Transmitter Bus

+ busType: String

Transceiv er

IOComponent

Sensor

Actuator

HWProcessor

+ isaFamily: String
+ isaType: ISATypeKind
+ mips: int [0..1]
+ numALUs: int [0..1]
+ numCores: int = 1
+ numFPUs: int [0..1]
+ numPipelines: int [0..1]
+ numStages: int [0..1]

«enumeration»
ISATypeKind

«enumeration»
 undef
 RISC
 CISC
 VLIW
 SIMD
 other

HWMemory

HWCache

+ associativity: int
+ cacheType: CacheTypeKind
+ level: int = 1
+ numSets: int
+ replacementPolicy: ReplacementPolicy
+ writePolicy: WritePolicy

HWRam

+ isSynchronous: Boolean
+ numBanks: int [0..1]
+ numCols: int [0..1]
+ numRows: int [0..1]

HWRom

+ numBanks: int [0..1]
+ numCols: int [0..1]
+ numRows: int [0..1]
+ romType: RomTypeKind

«enumeration»
CacheTypeKind

«enumeration»
 undef
 data
 instruction
 unified
 other

«enumeration»
ReplacementPolicy

«enumeration»
 undef
 LRU
 NFU
 FIFO
 other

«enumeration»
WritePolicy

«enumeration»
 undef
 writeback
 writethrough
 other

«enumeration»
RomTypeKind

«enumeration»
 undef
 maskedRom
 EPROM
 EEPROM
 Flash
 other

RichComponent

TechnicalComponent

Textual lyRepresentedElement

Expression

+rxDataRate

1

+wordWidth

0..1

+txDataRate

1

+size

1
+adrWidth

1

+throughput

1

+clkFreq

0..1

+blocksize

1
+busSpeed

1

+wordWidth

0..1

Figure 2.58: Common Hardware Elements.

2.6.1.2 Transmitter

This element represents a communication part of a technical component which can
transmit data to a receiver or a transmitter.

Generalizations: TechnicalComponent

Aggregations

• txDataRate : Expression [1] The data rate with wich this transmitter can trans-
mit data (e. g. 3 Mb/s).

2.6.1.3 Transceiver

The transceiver is a combination of receiver and transmitter. The mode decides
whether the transceiver can receive and transmit at the same time or not (either re-
ceive or transmit at a time).

Generalizations: Receiver, Transmitter

110/135

Specification of an Architecture Meta-Model

2.6.1.4 Bus

The bus represents logical communication channels. It serves as an allocation target
for connectors, i. e. the data exchanged between rich components. The bus carries
data from any transmitter to all receivers. Transmitters and receivers are identified
by the wires of the bus, i. e. the associated HwConnectors. The available busSpeed
represents the maximum amount of useful data that can be carried. The busSpeed has
already deducted speed reduction resulting from frame overhead, timing effects, etc.
The busType attribute may contain information about the bus type (CAN, FlexRay,
ADFX, etc.).

Generalizations: TechnicalComponent

Attributes

• busType : String [1] The type of the bus specified in a string.

Aggregations

• busSpeed : Expression [1] The data rate with wich this bus can transmit or
receive data (e. g. 3 Mb/s).

2.6.1.5 IOComponent

An input/output component represents an interaction point with the environment. Its
sub-meta-classes are Actuator and Sensor.

Generalizations: TechnicalComponent

2.6.1.6 Actuator

The Actuator is the element that represents electrical actuators, such as valves, motors,
lamps, brake units, etc. Non-electrical actuators such as the engine, hydraulics, etc.
are considered part of the plant model (environment). The Actuator meta-class rep-
resents the physical and electrical aspects of actuator hardware. The logical aspect is
represented by the behavioral part.

Generalizations: IOComponent

2.6.1.7 Sensor

Sensor represents a hardware entity for digital or analog sensor elements. The Sensor
is connected electrically to the electrical electrical of the hardware architecture (other
TechnicalComponents). The logical aspect is represented by the behavioral part.

111/135

Specification of an Architecture Meta-Model

Generalizations: IOComponent

2.6.1.8 HwComputingUnit

Hardware computing units represent the computer nodes of the embedded electrical/-
electronic system. They consist of processor(s) and may be connected to sensors,
actuators and other computing units via a HwConnector.

Node denotes an electronic control unit that acts as a computing element executing
Functions. In case a single CPU-single core computing unit is represented, it is suffi-
cient to have a single, non-hierarchical Node. The computing unit element represents
an allocation target of logical rich components.

Generalizations: TechnicalComponent

Aggregations

• clkFreq : Expression [1] The clock frequency with wich this HwComputin-
gUnit is clocked (e. g. 50 MHz).

2.6.1.9 HwProcessor

A hardware processor is a hardware computing unit that can be described as a gen-
eral purpose processor (no costum design, something like a commercial-of-the-shelf
product).

Generalizations: HwComputingUnit

Attributes

• isaFamily : String [1] Denotes the instruction set architecture (ISA) family
this processor is derived of.

• isaType : ISATypeKind [1] Indicates the type of the ISA.

• mips : int [0..1] Optionally indicates the how many instructions per second
this processor can perform (million instructions per second). An average rate is
stated.

• numALU : int [0..1] Optionally indicates how many arithmetic logic units
(ALUs) this processor has.

• numCores : int [0..1] Optionally indicates how many cores this processor has.

• numFPUs : int [0..1] Optionally indicates how many floating point units
(FPUs) this processor has.

112/135

Specification of an Architecture Meta-Model

• numPipelines : int [0..1] Optionally indicates how many pipelines this pro-
cessor has.

• numStages : int [0..1] Optionally indicates how many pipeline stages this
processor has.

2.6.1.10 HwMemory

HwMemory represents memory units present in a technical component. It also has
information about its size, throughput and its address size.

Generalizations: TechnicalComponent

Aggregations

• adrWidth : Expression [1] The address size or width of the address specifica-
tion (e. g. 64 Bit).

• size : Expression [1] The size of the memory unit (e. g. 64 Mb).

• throughput : Expression [1] The data rate with wich this memory unit can
store or access data (e. g. 3 Mb/s).

2.6.1.11 HwRam

A Hardware RAM (Random Access Memory) represents a readable and writable mem-
ory unit.

Generalizations: HwMemory

Attributes

• isSynchronous : Boolean [1] Indicates whether the RAM is synchronous or
not.

• numBanks : int [0..1] Optionally indicates how many banks there are on the
RAM module.

• numCols : int [0..1] Optionally indicates how many collumns there are on the
RAM module.

• numRows : int [0..1] Optionally indicates how many rows there are on the
RAM module.

113/135

Specification of an Architecture Meta-Model

Aggregations

• wordWidth : Expression [0..1] The size or width of a date that can be accessed
or stored in the RAM module (e. g. 64 Bit).

2.6.1.12 HwRom

A Hardware ROM (Read Only Memory) represents a readable only memory unit.

Generalizations: HwMemory

Attributes

• numBanks : int [0..1] Optionally indicates how many banks there are on the
ROM.

• numCols : int [0..1] Optionally indicates how many collumns there are on the
ROM.

• numRows : int [0..1] Optionally indicates how many rows there are on the
ROM.

• romType : RomTypeKind [1] The type of ROM indicated by RomTypeKind.

Aggregations

• wordWidth : Expression [0..1] The size or width of a date that can be accessed
in the ROM (e. g. 64 Bit).

2.6.1.13 HwCache

A Hardware Cache is a intermediate memory that stores data for a certain time (de-
pending on the replacement policy) to serve them later in case they are accessed again.
As a very fast and expensive hardware component it has a rather limited size.

Generalizations: HwMemory

Attributes

• associativity : int [1] Describes the number of blocks in a set of the cache.

• cacheType : CacheTypeKind [1] Indicates the type of cache.

• level : int [1] Indicates how “close” the cache is to the processing speed (lower
level means closer the the actual processable speed).

114/135

Specification of an Architecture Meta-Model

• numSets : int [1] The number of sets of the cache.

• replacementPolicy : ReplacementPolicyKind [1] The policy (cache algo-
rithm) defining how existing data shall be replaced.

• writePolicy : WritePolicyKind [1] The policy defining how new cache entries
are to be written.

Aggregations

• blockSize : Expression [1] The size or width of a block in the cache (e. g. 64
Bit).

2.6.1.14 CacheTypeKind {Enumeration}

This enumeration descripes different cache types.

EnumerationLiterals

undef indicates that the cache type is unknown.

data indicates a pure data cache.

instruction indicates a pure instruciton cache.

unified indicates a cache containing both data and instructions.

other indicates that the cache type is not listed in this enumration.

2.6.1.15 RomTypeKind {Enumeration}

Describes the type or ROM.

EnumerationLiterals

undef indicates that the ROM type is unknown.

maskedROM indicates a type of ROM where the readable contents are code on the
integrated circuit level.

EPROM indicates a erasable programmable ROM.

EEPROM indicates a electrical erasable programmable ROM.

Flash indicates a type of ROM which is writable but can only write much slowlier
than read.

other indicates that the ROM type is not listed in this enumration.

115/135

Specification of an Architecture Meta-Model

2.6.1.16 ReplacementPolicy {Enumeration}

Denotes the type of cache replacement algorithm to be used when updating/replacing
elements.

EnumerationLiterals

undef indicates that the replacement policy is unknown.

LRU indicates a least recently used (LRU) cache algorithm, if the cache is full, the
least recently used data will be replaced by a new data.

NFU indicates a not frequently used (NFU) cache algorithm, if the cache is full, the
data with the least average usage will be replaced by a new data.

FIFO indicates a first in first out (FIFO) cache algorithm, if the cache is full, the oldest
data is replaced by the newest data.

other indicates that the replacement policy is not listed in this enumration.

2.6.1.17 ISATypeKind {Enumeration}

Denotes the instruction set architecture kind.

EnumerationLiterals

undef indicates that the ISA type is unknown.

RISC indicates that the ISA is a reduced instruction set computer (RISC).

CISC indicates that the ISA is a complex instruction set computer (CISC).

VLIW indicates that the ISA is a very long instruction word (VLIW) architecture.

SIMD indicates that the ISA is a single instruction multiple data (SIMD) architecture.

other indicates that the ISA type is not listed in this enumration.

2.6.1.18 WritePolicy {Enumeration}

The write policy denotes how the cache handles write operations (indicates the timing
of write operations).

116/135

Specification of an Architecture Meta-Model

EnumerationLiterals

undef indicates that the write policy is unknown.

writeback indicates that writes are not immediately mirrored to the backing store.
The overwritten data entry is only marked as “dirty”.

writethrough indicates that every write action causes a synchronous write to the
backing store.

other indicates that the write policy is not listed in this enumration.

2.6.2 Resource Modeling and Scheduling

Resources like ComputingResource, CommunicationResource, StorageResource con-
stitute an abstraction of the resources a platform provides and allocated behavior from
logical components. Figure 2.59 gives an overview of resources.

RichComponent

Resource

+ isActive: Boolean
+ isProtected: Boolean
+ resMult: int [0..1] = 1

StorageResource

ConcurrencyResource ProcessingResource

Dev iceResource ComputingResource CommunicationResource

+ transmMode: TransmModeKind

SchedulerSlot

+ isPreemptible: Boolean = true

Scheduler

+ isPreemptible: Boolean = true

Textual lyRepresentedElement

Expression

+blockingTime
1

+capacity

1
+packetTime

1
+elementSize

1
+schedule

1+elementSize 1

Figure 2.59: Resources.

Any resource is a specialized RichComponent as introduced in Section 2.1.

2.6.2.1 Resource

A Resource is an abstraction of a particular resource a platform provides and the al-
located behaviour from components of the logical perspective. It is a structural entity,

117/135

Specification of an Architecture Meta-Model

that is part of a model of the technical perspective of a system. Through its ports it can
be connected to other resources. The specializations of Resource add attributes and
parameters typical for a certain kind of resource. The meta-model element Resource
shall only be used directly, if none of the specializations does fit.

Generalizations: RichComponent

Attributes

• isActive : Boolean [1] If set to true, this indicates that the resource has its own
course of action, i. e. thread of control.

• isProtected : Boolean [1] If true, this indicates that access to the resource must
be arbitrated.

• resMult : int [0..1] Defaults to 1. If set to another value, this indicates the max-
imum number of elementary units of some type of resource accessible through
its ports.

2.6.2.2 ProcessingResource {abstract}

A ProcessingResource is a generalization of the concepts ComputingResource, De-
viceResource and CommunicationResource.

Generalizations: Resource

2.6.2.3 DeviceResource

A device resource is a general not exactly specifyable resource represented by some
device (a scenario may be that the device resource is manufactured by a supplier, so
that the inner parts are unknown).

Generalizations: Resource

2.6.2.4 ComputingResource

A ComputingResource is a protected active resource, that models a processing device
capable of storing and executing some program.

Generalizations: ProcessingResource

118/135

Specification of an Architecture Meta-Model

2.6.2.5 CommunicationResource

A CommunicationResource models an entity transferring information from one loca-
tion to another.

Generalizations: ProcessingResource

Attributes

• transmMode : TransmModeKind [1] The transmission mode.

Aggregations

• elementSize : Expression [1] The size of the communication quantum, that
can be transmitted (e. g. width of a bus).

• capacity : Expression [1] Specifies the communication-capacity of the ele-
ment.

• packetTime : Expression [1] The time it takes to transmit an element on this
CommunicationResource.

• blockingTime : Expression [1] The time the CommunicationResource is
blocked due to transmission of an element.

2.6.2.6 TransmModeKind {Enumeration}

TransmModeKind is an enumeration with elements, that can be used as literals for
specifying the transmission mode of a CommunicationResource. Such modes are:
simplex, half duplex, full duplex.

EnumerationLiterals

simplex indicates that data is transmitted in one direction.

half duplex indicates that data can flow in one direction or the other, but not both
directions at the same time.

full duplex indicates that data can flow in both directions simultaneously. Thus, each
end can transmit and receive at the same time.

2.6.2.7 ConcurrencyResource

A ConcurrencyResource is a protected active resource, that is capable of performing its
execution concurrently with others. Processing capacity is provided by other resources
(e. g. a ComputingResource).

119/135

Specification of an Architecture Meta-Model

Generalizations: Resource

Aggregations

• required : SchedulerRPort [0..*] {subsets RichComponent.port} The schedul-
ing interface required by this ConcurrencyResource. This port should be con-
nected to a SchedulerSlot, which provides access to its fraction of the capacity
of some ProcessingResource on this port.

2.6.2.8 Scheduler

A Scheduler controls access to its arbitrated ProcessingResources following a certain
scheduling policy.

Generalizations: Resource

Attributes

• isPreemptible : Boolean [1] Whether this scheduler and its associated clients
is allowed to be preempted, e. g. by some higher level scheduler.

Aggregations

• policy : SchedulingPolicy [1] The policy of the scheduler under which it pro-
vide access to its arbitrated resource.

• schedule : Expression [0..1] Explicit specification of the schedule. This may
have been calculated offline by some tool.

• provided : SchedulerPPort [1..*] {subsets RichComponent.port} The schedul-
ing interface provided by this Scheduler. This port should be connected to some
SchedulerSlot, which are clients of this scheduler and thus compete for access
to the ProcessingResource managed by this Scheduler.

• required : SchedulerRPort [0..*] {subsets RichComponent.port} The schedul-
ing interface required by this Scheduler. This port should be connected to a
SchedulerSlot, which is in turn connected to some other Scheduler. This sup-
ports the modelling of hierarchical scheduling.

2.6.2.9 SchedulingPolicy

A SchedulingPolicy specifies the strategy of a scheduler to do its run-time arbitration
of a ProcessingResource.

120/135

Specification of an Architecture Meta-Model

Attributes

• policy : SchedPolicyKind [1] Kind of scheduling policy.

• otherSchedPolicy : String [0..1] If the policy is none of that policies contained
in the enumeration SchedulingPolicy, it can be specified here.

Aggregations

• scheduleLength : Expression [0..1] For some scheduling policies there exist a
scheduling round, that is repeatedly executed (TimeTableDriven). This specifies
the duration in time of such a round. Other policies like RoundRobin typically
assign time-slices to each client in equal portions. If such a policy is selected,
this attribute specifies the duration of a time-slice.

2.6.2.10 SchedPolicyKind {Enumeration}

SchedPolicyKind is an enumeration with elements, that can be used as literals for
specifying the scheduling policy of a Scheduler.

EnumerationLiterals

EarliestDeadlineFirst This policy implies, that the client with the most urgent dead-
line will be granted access to the resource.

FixedPriority This policy implies, that the client with the highest priority will be
granted access to the resource.

RoundRobin This policy implies, that access to the resource will be granted in a
circular order fashion. Typically each client will be assigned a time-slice.

TimeTableDriven This policy implies, that there is a scheduling round, that will be
repeated over and over again and access to the resource will be granted at time
points relative to the beginning of such a period.

Undef This policy can be chosen, if the policy of a scheduler can not be categorized
according to one of the previous policies.

Other This policy can be chosen, if the policy of a scheduler can not be categorized
according to one of the previous policies. The attribute otherSchedPolicy of the
aggregating SchedulingPolicy needs to be filled out then.

121/135

Specification of an Architecture Meta-Model

2.6.2.11 SchedulerSlot

A SchedulerSlot models the client of a scheduler. Thus it specifies necessary attributes
used by its associated scheduler to carry out arbitration. The slot itself does not model
the functional behaviour that is executed, when access to the associated ProcessingRe-
source is granted. It just provides an execution context for connected ConcurrencyRe-
sources.

Generalizations: Resource

Attributes

• isPreemptible : Boolean [1] Whether this slot is allowed to be preempted, e. g.
by some scheduler, that withdraws access to the ProcessingResource by this slots
and grants access to another slot.

Aggregations

• schedParameters : SchedParameterSpec [1] Parameters used by some sched-
uler to do arbitration according to its policy.

• required : SchedulerRPort [1] {subsets RichComponent.port} The scheduling
interface required by this SchedulerSlot. This port should be connected to a
Scheduler, which exposes the behaviour of arbitration of access to its managed
ProcessingResource on this port.

• provided : SchedulerPPort [0..*] {subsets RichComponent.port} The schedul-
ing interface provided by this SchedulerSlot. This port should be connected to
some ConcurrencyResource, which will actually make use of the processing ca-
pacity, once access is granted to this SchedulerSlot by a connected Scheduler.

2.6.2.12 SchedParameterSpec

A SchedParameterSpec is a specification of the parameters of some SchedulerSlot that
are used by some scheduler to do arbitration according to its policy.

Generalizations: Variable

2.6.2.13 Task

A Task is a special ConcurrencyResource modeling a computation task. The com-
puting capacity needed by the task is provided either directly by some ComputingRe-
source or by a SchedulerSlot.

122/135

Specification of an Architecture Meta-Model

Generalizations: ConcurrencyResource

Aggregations

• executionTime : ExecutionTimeSpec [0..*] {subsets RichComponent.attribute}
Attribute specifying the execution time of this task.

2.6.2.14 ExecutionTimeSpec

An ExecutionTimeSpec specifies the absolute amount of computational capacity
needed by a task. As this specification depends on the actual ComputingResource,
which the task is mapped to, a ComputingResource can be referenced as the scope of
this execution time specification.

Generalizations: Constant

Associations

• scope : ComputingResource [0..1] The ComputingResouce for which this ex-
ecution time has been measured/estimated/analyzed.

2.6.2.15 FrameTriggering

A FrameTriggering defines the manner of triggering and identification of a Frame on
a CommunicationResource.

Generalizations: ConcurrencyResource

2.6.2.16 SchedulerPort {abstract}

A SchedulerPort provides means to specify the scheduling interface of a resource. A
Scheduler can expose its arbitration of access to its managed ProcessingResource at
such ports. SchedulerSlots connected to that ports in turn can expose their fraction of
the capacity of the ProcessingResource granted by the Scheduler to connected Con-
currencyResources.

Generalizations: Port

Associations

• type : SchedulerPortSpec [1] {redefines Port.type} The type of this Sched-
ulerPort.

123/135

Specification of an Architecture Meta-Model

SchedulerPort

Multiplici tyElement

NavigableFeature

«prototype»

Port

+ isConjugated: Boolean

ReusableElement

TemplatableElement

«type»

PortSpecification

SchedulerPortSpec

SchedulerPPort SchedulerRPort

«isOfType»

+type
1

{redefines

type}

«isOfType»

+type

1

Figure 2.60: Scheduler Ports.

2.6.2.17 SchedulerPPort

A specialization of SchedulerPort that provides a scheduling interface conforming to
SchedulerPortSpec to connected SchedulerSlots or ConcurrencyResources.

Generalizations: SchedulerPort

Constraints SchedulerPPorts are subject to the following constraints:

1. The attribute isConjugated inherited from Port must be false.
Formal OCL constraint TBD.

2.6.2.18 SchedulerRPort

A specialization of SchedulerPort, that requires a scheduling interface conforming to
SchedulerPortSpec from connected SchedulerSlots or Schedulers.

Generalizations: SchedulerPort

Constraints SchedulerRPort are subject to the following constraints:

1. The attribute isConjugated inherited from Port must be true.
Formal OCL constraint TBD.

124/135

Specification of an Architecture Meta-Model

2.6.2.19 SchedulerPortSpec

A SchedulerPortSpec is a special PortSpecification that defines a scheduling interface
for resources. It is used to type SchedulerPorts.

Generalizations: PortSpecification

Aggregations

• schedulerEvent : Flow [3..5] {subsets PortSpecification.interactionPoint} The
flows, that constitute this scheduling interface. If preemption shall not be sup-
ported by this scheduling interface, only three flows are necessary. Otherwise
five flows are needed.

Associations

• activateEvent : Flow [1] The referenced flow shall be triggered by some Con-
currencyResource, when it requires access to the scheduled capacity of some
ProcessingResource.

• startEvent : Flow [1] The referenced flow shall be triggered by some Sched-
uler or forwarded by some SchedulerSlot, when access to the processing capac-
ities of a managed resource is granted.

• finEvent : Flow [1] The referenced flow shall be triggered by some Concur-
rencyResource and forwarded by some SchedulerSlot, after it has accessed the
processing capacity of a resource. This is interpreted as an indication, that pro-
cessing has finished and access to the ProcessingResource is relinquished.

• suspendEvent : Flow [0..1] The referenced flow shall be triggered by some
Scheduler or forwarded by some SchedulerSlot, when access to the process-
ing capacities of a managed resource has been granted before, but shall now be
revoked in favour of another SchedulerSlot. This reference to a flow is only
needed, if this scheduling interface shall support preemption.

• resumeEvent : Flow [0..1] The referenced flow shall be triggered by some
Scheduler or forwarded by some SchedulerSlot, when access to the processing
capacities of a managed resource has been granted and suspended before and
now access to the ProcessingResource is granted again. This reference to a flow
is only needed, if this scheduling interface shall support preemption.

125/135

Specification of an Architecture Meta-Model

Constraints SchedulerPortSpecs are subject to the following constraints:

1. The direction of the referenced flow under the role name activateEvent must be
FlowDirection::in

2. The direction of the referenced flow under the role name startEvent must be
FlowDirection::out

3. The direction of the referenced flow under the role name finEvent must be
FlowDirection::in

4. The direction of the referenced flow under the role name suspendEvent must be
FlowDirection::out

5. The direction of the referenced flow under the role name resumeEvent must be
FlowDirection::out
Formal OCL constraint TBD.

2.6.2.20 ComData {abstract}

A ComData provides means to specify pieces of information, that must be handled
by the communication facilities of the system. It is a generalization of the concepts
Signal, Message and Frame. Figure 2.61 gives an overview.

ComData
Signal

+ length: int

Message

+ length: int

Frame

+ length: int

ReusableElement

NamedElement

+ comment: String [0..*]

+ name: String

+ /qualifiedName: String {readOnly}

MsgToFrameMapping

+ offsetInFrame: int

SignalToMsgMapping

+ offsetInMessage: int

+ transferProperty: TransferPropertyKind

«enumeration»

TransferPropertyKind

«enumeration»

 triggered

 pending

 triggeredOnChange

PortReference

+comData 1

+referencedPorts

0..*

+owner +signalToMsgMapping

0..*

+owner +msgToFrameMapping

0..*

+message

1

+signal

1

Figure 2.61: Communication Data.

Generalizations: ReusableElement

126/135

Specification of an Architecture Meta-Model

Aggregations

• referencedPorts : PortReference [0..*] References the ports containing in-
formation about the type and thus about the properties of the Signal/Mes-
sage/Frame.

2.6.2.21 PortReference

A port reference references a port in a unambiguous way. This is done by referencing
the complete context of the port as well. Figure 2.62 gives an overview.

PortReference

«indexedRef»

PartContextReference

«indexedRef»

PartReference

ReusableElement

ComData

TextuallyRepresentedElement

Expression

PortInstanceReference

MultiplicityElement

NavigableFeature

«prototype»

Port

+ isConjugated: Boolean
«instanceRef.context»

+port

1

+portIndex
0..1

+partContextIndex

0..* {ordered}

+partIndex

0..1

+comData 1

+referencedPorts 0..*

«instanceRef.root»

+instance

1

Figure 2.62: Port reference.

Aggregations

• instance : PortInstanceReference [1] References the actual instance of a port.

Associations

• comData : ComData [1] The comunication data this port reference belongs
to.

2.6.2.22 PortInstanceReference

The meta-class actually references a port instance (referring to its part context and
index).

Generalizations: PartReference, PartContextReference

Aggregations

• portIndex : Expression [0..1] The index of the exact port if a port is a multiple
instance.

127/135

Specification of an Architecture Meta-Model

Associations

• port : Port [1] The port which is referred to.

2.6.2.23 Signal

A Signal models the input or output parameter of some component from the “commu-
nication” point of view. It is thus characterized by a sequence of bits.

Generalizations: ComData

Attributes

• length : int [1] The size of the Signal in bits.

2.6.2.24 Message

A Message consists of one or more signals. In a Frame it is simply a sequence of bytes.

Generalizations: ComData

Attributes

• length : int [1] The size of the Message in bytes.

Aggregations

• signalToMsgMapping : SignalToMsgMapping [0..*] The mappings of partic-
ular Signals to this Message.

Constraints Messages are subject to the following constraints:

1. At least for one of the aggregated SignalToMsgMappings the attribute transfer-
Property must NOT be set to TransferPropertyKind::pending.
Formal OCL constraint TBD.

2.6.2.25 SignalToMsgMapping

A SignalToMsgMapping specifies how a particular Signal is mapped to a Message,
that aggregates this mapping.

Generalizations: NamedElement

128/135

Specification of an Architecture Meta-Model

Attributes

• offsetInMessage : int [1] This specifies the bit-position of the referenced Sig-
nal within a Message.

• transferProperty : TransferPropertyKind [1] Specifies the triggering proper-
ties of the Message aggregating this mapping with repsect to the referenced Sig-
nal.

Associations

• signal : Signal [1] Reference to the Signal, that shall be mapped to the Mes-
sage that aggregates this mapping.

2.6.2.26 TransferPropertyKind {Enumeration}

TransferPropertyKind is an enumeration with elements, that can be used as literals
for specifying the triggering properties of a Message aggregating some mapping, with
respect to the mapped Signal.

EnumerationLiterals

triggered This transfer property implies that the Message will be triggered immedi-
ately when the mapped Signal has been triggered.

pending This transfer property implies that the Message will NOT be triggered when
the mapped Signal has been triggered.

triggeredOnChange This transfer property implies that the Message will be trig-
gered immediately when the mapped Signal has been triggered and its value has
changed.

2.6.2.27 Frame

A Frame consists of one or more Messages (and thereby Signals). It is the smallest
piece of information, that can be transmitted by a CommunicationResource.

Generalizations: ComData

Attributes

• length : int [1] The size of the Frame in bytes.

129/135

Specification of an Architecture Meta-Model

Aggregations

• msgToFrameMapping : MsgToFrameMapping [0..*] The mappings of partic-
ular Messages to this Frame.

2.6.2.28 MsgToFrameMapping

A MsgToFrameMapping specifies how a particular Message is mapped to a Frame,
that aggregates this mapping.

Generalizations: NamedElement

Attributes

• offsetInFrame : int [1] This specifies the byte-position of the referenced Mes-
sage within a Frame.

Associations

• message : Message [1] Reference to the Message, that shall be mapped to the
Frame, that aggregates this mapping.

130/135

3 Conclusion

In this document a meta-model for the SPES2020 project was specified. The meta-
model specification consists of a common concept meta-model and furthermore pro-
vides a tailoring approach for meta-models that shall be mapped to the SPESMM.

In the ongoing work on the SPES Meta-Model for future versions of the meta-model
specifications of the application projects (AWP-AV, AWP-AT, AWP-AU, AWP-MT,
AWP-EN) will be integrated. Thus, the integration based on the application project’s
specification will be completed.

Together with the methodology document on how to use the SPESMM this doc-
ument serves as a reference for all usable and non-usable model artifacts of the
SPESMM.

131/135

List of Figures

1.1 Concept of components and ports. 3

2.1 General overview over the SPESMM packages. 7
2.2 Elements. 8
2.3 Named elements. 9
2.4 Packages. 10
2.5 System design elements. 12
2.6 Embedded system design model evolution. 13
2.7 Types. 18
2.8 Constants. 19
2.9 Textually represented element. 20
2.10 Values. 20
2.11 Navigable elements. 22
2.12 Templates. 23
2.13 Parameters. 25
2.14 Parameter Substitution. 26
2.15 Multiplicities. 28
2.16 Rich Component structure. 29
2.17 Rich Component behavior. 29
2.18 Rich Component Property. 33
2.19 Ports. 34
2.20 Variables. 34
2.21 Interconnections. 35
2.22 Connector references to ports of components and component parts. . . 37
2.23 FlowBinding flow. 38
2.24 ServiceBinding service. 40
2.25 Port Specifications. 41
2.26 Elaboration of Architectures. 46
2.27 EndSubstitution port. 49
2.28 Elements for domain-, user-, and tool-specific extensions. 50
2.29 Functions and Calls. 52
2.30 Initializer. 55
2.31 Service Implementation. 56
2.32 Behavior definitions. 57
2.33 Behavior implementation. 58

132/135

Specification of an Architecture Meta-Model

2.34 Behavior blocks. 59
2.35 Pins. 66
2.36 BehaviorLinks. 68
2.37 BehaviorLink attributes. 69
2.38 BehaviorLink flowPins. 70
2.39 BehaviorLink servicePins. 71
2.40 BehaviorLink flows. 71
2.41 BehaviorLink services. 72
2.42 Component mapping relations. 73
2.43 Mapping relations: Allocation and Realization. 74
2.44 Mapping part. 75
2.45 MappingLink. 78
2.46 MappingLink flow. 79
2.47 MappingLink service. 80
2.48 MappingLink flowPin. 81
2.49 MappingLink servicePin. 81
2.50 Port Mappings. 82
2.51 Requirements. 84
2.52 Traceability. 89
2.53 Verification and Validation. 92
2.54 Requirement Quality Analysis represented with VV concepts. 93
2.55 Architecture Assessments represented with VV concepts. 94
2.56 Safety concepts. 100
2.57 Data types. 104
2.58 Common Hardware Elements. 110
2.59 Resources. 117
2.60 Scheduler Ports. 124
2.61 Communication Data. 126
2.62 Port reference. 127

133/135

Bibliography

[ATE08] The ATESST Consortium. EAST ADL 2.0 Specification, February 2008.

[BRR+10] Andreas Baumgart, Philipp Reinkemeier, Achim Rettberg, Ingo Stierand,
Eike Thaden, and Raphael Weber. A model–based design methodology
with contracts to enhance the development process of safety–critical sys-
tems. In Sang Min, Robert Pettit, Peter Puschner, and Theo Ungerer, ed-
itors, Software Technologies for Embedded and Ubiquitous Systems, vol-
ume 6399 of Lecture Notes in Computer Science, pages 59–70. Springer
Berlin / Heidelberg, 2010.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture
Analysis & Design Language (AADL): An Introduction. Carnegie Mellon
University, Pittsburgh, USA, 2006.

[ISO07] ISO/IEC/IEEE. ISO/IEC Standard for Systems and Software Engineer-
ing – Recommended Practice for Architectural Description of Software–
Intensive Systems. ISO/IEC 42010 IEEE Std 1471-2000 First edition
2007-07-15, pages c1 –24, jul. 2007.

[JMM08] Bernhard Josko, Qin Ma, and Alexander Metzner. Designing Embedded
Systems using Heterogeneous Rich Components. Proceedings of the IN-
COSE International Symposium 2008, 2008.

[Obj08a] Object Management Group. OMG Systems Modeling Language (OMG
SysML TM), November 2008. Version 1.1.

[Obj08b] Object Management Group. A UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems, June 2008. Beta 2.

[Ode98] James J. Odell. Advanced Object–Oriented Analysis & Design Using
UML, chapter Six different kinds of aggregation, pages 139 – 149. Cam-
bridge University Press, 1998.

[Pro07] Project SPEEDS: WP.2.1 Partners. SPEEDS Meta-model Behavioural Se-
mantics — Complement do D.2.1.c. Technical report, The SPEEDS con-
sortium, 2007.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models
for requirements traceability. IEEE Trans. Softw. Eng., 27(1):58–93, 2001.

134/135

Specification of an Architecture Meta-Model

[WTR09] Raphael Weber, Eike Thaden, and Philipp Reinkemeier. Requirement Def-
inition for the Reference Architecture. SPES 2020 Deliverable D3.1.A,
The SPES 2020 Project, OFFIS, October 2009.

135/135

	1 Introduction
	1.1 Overview
	1.2 Purpose
	1.3 Scope
	1.3.1 Motivation
	1.3.2 Meta-Model Requirements
	1.3.3 Integration Concepts

	1.4 Differences between the Meta-Model and the Profile
	1.5 How to read this Document
	1.6 Example Description

	2 Specification of the SPES Meta-Model
	2.1 Component Meta-Model
	2.1.1 Model Elements
	2.1.2 Namespaces
	2.1.3 Packages
	2.1.4 System Design
	2.1.5 Types
	2.1.6 Constants
	2.1.7 Textual Elements
	2.1.8 Values
	2.1.9 Navigable Elements
	2.1.10 Templates
	2.1.11 Multiplicities
	2.1.12 Rich Components
	2.1.13 RichComponents and Parts
	2.1.14 Componenets and Ports
	2.1.15 Components and Attributes
	2.1.16 Components and Interconnections
	2.1.17 Port Specifications
	2.1.18 Elaboration of Architectures
	2.1.19 Domain-, User-, and Tool-specific Extensions

	2.2 Component Behavior Meta-Model
	2.2.1 Value Functions and Calls
	2.2.2 Component Initialization
	2.2.3 Service Implementations
	2.2.4 Behavior Definitions
	2.2.5 Behavior Implementations
	2.2.6 Behavior Blocks
	2.2.7 Pins
	2.2.8 Behavior Links
	2.2.9 Component Mapping

	2.3 Requirements Meta-Model
	2.3.1 Requirements
	2.3.2 Requirements Traceability

	2.4 Safety Aspects of the Meta–Model
	2.4.1 Verification and Validation
	2.4.2 Safety Extension

	2.5 Data Type Specification
	2.5.1 Data Types

	2.6 Technical Elements
	2.6.1 Hardware Elements
	2.6.2 Resource Modeling and Scheduling

	3 Conclusion

