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Kurzfassung 

Dieses Dokument beschreibt einen im Arbeitspaket 5 des SPES-Zentralprojekts ent-
wickelte Ansatz für die parallele Ausführung von Software für eingebettete Systeme. 
Darauf aufbauend wurde eine Bibliothek implementiert, die als Grundlage für die 
automatische Code-Generierung in der modellbasierten Software-Entwicklung ver-
wendet werden kann. Die Bibliothek bildet somit eine technische Schnittstelle zwi-
schen den in ZP-AP1 und ZP-AP5 untersuchten Methoden und Werkzeugen. 
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1 Einordnung und Kurzbeschreibung 

1.1 Motivation und Einordnung 
In eingebetteten Systemen kommen zunehmend Multicore-Prozessoren zum Ein-
satz, bei denen mehrere unabhängige Prozessorkerne auf einem Chip untergebracht 
sind. Um von den Vorteilen solcher Prozessoren profitieren zu können, müssen da-
rauf auszuführende Anwendungen parallelisiert werden. Dies erfordert jedoch insbe-
sondere bei der Entwicklung sicherheitsrelevanter eingebetteter Systeme neue Pro-
grammiermethoden und -werkzeuge. Hierfür bieten sich modellbasierte Verfahren 
an, mit deren Hilfe sich aus formalen Beschreibungen unter Abstraktion von imple-
mentierungsspezifischen Details automatisch Software erzeugen lässt. Die Generie-
rung der Software basiert dabei üblicherweise auf in der Zielsprache implementierten 
Bibliotheken bzw. Laufzeitsystemen, die wiederkehrende Grundfunktionen zur Verfü-
gung stellen. Die folgende Abbildung zeigt beispielhaft den Entwurfsablauf vom Mo-
dell bis zur Ausführung der generierten Software auf einem Multicore-System: 
 

 
Für die Beschreibung der Modelle eignen sich insbesondere die im Arbeitspaket ZP-
AP1 untersuchten Methoden und Werkzeuge für die modellbasierte Entwicklung ein-
gebetteter Systeme (vgl. [1]) sowie die in ZP-Task 5.1 vorgeschlagene Koordinie-
rungssprache [2] (siehe Deliverable D5.1.A). 

1.2 Management Summary 
Im Arbeitspaket 5 des Zentralprojekts wurde eine C++-Bibliothek inkl. Laufzeitsystem 
(Middleware) entwickelt, die als Grundlage für die Code-Generierung beim modellba-
sierten Entwurf dienen kann. Die Bibliothek ermöglicht eine plattformübergreifende, 
parallele Ausführung datenstromverarbeitender Systeme auf Multicore-Rechnern 
durch Abstraktion von der zugrunde liegenden Hardware. 
 
Ein wesentliches Merkmal der Bibliothek ist die Unterstützung nichtlinearer Struktu-
ren. Ein System hat eine nichtlineare Struktur, wenn Datenströme vervielfältigt oder 
aufgespalten bzw. vereinigt werden. Eine solche Struktur liegt z.B. bereits dann vor, 
wenn das Ergebnis einer Berechnung von mehreren Funktionsblöcken als Eingabe 
verwendet wird. Solche Systeme lassen sich mit herkömmlichen Pipelines, die aus 
(linearen) Ketten von Pipelinestufen bestehen, nur auf Umwegen beschreiben. Nicht-
lineare Strukturen haben unter anderem den Vorteil einer Reduzierung der Latenz-
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zeit. Die Latenzzeit ist vor allem bei eingebetteten Systemen von Bedeutung, da die-
se in der Regel Echtzeitanforderungen unterliegen. 
 
Die Bibliothek basiert auf einem deterministischen Ausführungsmodell, wodurch typi-
sche Probleme bei der Entwicklung paralleler Software wie erschwerte Testbarkeit 
vermieden werden. Die folgende Auflistung gibt eine Zusammenfassung der wich-
tigsten Eigenschaften: 
 

• Abstraktion von der zugrunde liegenden Hardware 
• Deterministisches Ausführungsmodell 
• Unterstützung nichtlinearer Strukturen zur Reduzierung der Latenzzeit 
• Automatische Lastbalancierung  
• Skalierbarkeit durch verteilte Synchronisation und Vermeidung globaler 

Datenstrukturen 
• Integration von bestehendem Programmteilen (legacy code) 
• Wahlweise Ausführung von Operationen außerhalb der Reihenfolge (out-of-

order execution) 
• Bedingte Steuerung der Datenströme in Abhängigkeit der Eingabedaten 
• Automatische Speicherverwaltung 
• Erhöhte Typsicherheit durch statischen Polymorphismus 
• Flexibilität durch Austausch von zentralen Komponenten (z.B. Scheduler) 
• Hohe Effizienz durch lock-freie Algorithmen und Datenstrukturen 
• Generische Programmierung unter Verwendung von Templates, Lambda-

Funktionen etc. 

1.3 Überblick 
Ein detaillierte Beschreibung der Konzepte, Methoden und Algorithmen, die der Bi-
bliothek zugrunde liegen, ist in [3] zu finden (die Veröffentlichung wurde diesem Do-
kument als Anhang beigefügt). Deshalb wird an dieser Stelle auf eine weiterführende 
Betrachtung verzichtet.  
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Abstract—We propose a method for the parallel execution
of applications that process continuous streams of data. Unlike
pipeline-based approaches, which are frequently employed to
parallelize software for multi-core processors, our method
supports nonlinear structures that may contain conditionals.
Nonlinear structures reduce the latency for processing an
element from a stream, which is particularly important for
embedded systems that are subject to real-time constraints.

I. INTRODUCTION

To utilize the power of multi-core and future many-core
processors, computations have to be split into tasks that can
be executed in parallel. In many applications that process
continuous streams of data, e.g., in digital signal processing,
computations are split into series of tasks such that each
task processes an element from a stream. Computations on
streams are thus performed in a pipelined fashion, where the
tasks (pipeline stages) operate in parallel [1], [2]. In its basic
form, however, the throughput of a pipeline is limited by the
slowest stage. To solve this problem, multiple invocations of
a stage may be executed in parallel to achieve a maximum
of performance [3]. Hence, a new item, subsequently also
called token, may enter a parallel stage before the previous
one has left it, provided that the invocations do not interfere.
For stages with side effects it is usually required that at most
one invocation is active at a time. Such stages are said to
be serial [4].

Another technique to improve the performance of pipe-
lines is to process the items of a stream out-of-order. This
means that the order in which the tokens enter the pipeline
is not necessarily preserved. Out-of-order execution helps
to reduce idle times of the processor cores that arise due
to varying runtimes of parallel stages. However, certain
stages may require that the tokens arrive in the original
order. A typical application is video processing, where some
computations depend on the order of consecutive video
frames. Moreover, stages that perform input/output opera-
tions such as writing to a file on a hard disk or controlling
an actuator must be processed in-order. Otherwise, the result

This work has been partially funded by the German Federal Ministry of
Education and Research (BMBF) as part of the alliance project SPES2020,
grant 01IS08045.

may be wrong. In most libraries and language extensions that
support pipelining like Intel’s Threading Building Blocks
(TBB) [4], parallel stages are always executed out-of-order,
which simplifies the implementation.

Pipelining exploits parallelism by increasing the through-
put, but does not decrease the latency, the time required to
process an element from a stream. The latency is a crucial
concern in embedded systems that have tight constraints on
the timing. A reduction of the latency can be achieved if
more sophisticated structures than pipelines are employed
such as dataflow process networks (DPNs) [5]. In contrast
to pipelines, which have a string-like (linear) structure, the
actors of a DPN may be connected in an arbitrary nonlinear
way. Hence, DPNs can be viewed as a generalization of
pipelines. As another advantage of DPNs, the flow of tokens
may be controlled dynamically depending on the input data.
For example, a stream may be split into substreams using
a conditional, and the substreams may be merged at the
end of the conditional. However, differences in the runtimes
of the branches of a conditional can lead to idle times that
may significantly hurt performance. Moreover, DPNs do not
support multiple parallel invocations of an actor, since all
operations are performed in-order.

In this paper, we present an approach that solves these
problems. It supports parallel as well as serial actors and
can deal with out-of-order execution in the presence of
conditionals. For that purpose, each token carries besides
its value two indices that specify the token’s position in
the stream and the position of its predecessor. Additionally,
serial actors as well as switch operations, which are used
to implement conditionals, keep track of the most recently
processed token. In this way, the original order of the
tokens can be reconstructed even if some tokens are missing,
because they have been sent to the other branch of a
conditional. As a major advantage, our method reduces
idle times that may occur during conventional in-order
execution. Moreover, it is based on a deterministic model
of computation, which simplifies testing and debugging [6].
Determinism is particularly important in embedded system
design, where high demands are put on correctness and reli-
ability (a comprehensive treatment of programming models
for embedded multiprocessor systems can be found [7]).



Stream processing has a long history in computer sci-
ence [8] and has gained resurgent interest with the emer-
gence of multi-core processors. In recent years, various lan-
guages and libraries that facilitate parallel programming with
streams have been proposed (see, e.g., [9]–[12]). A method
that permits out-of-order execution of tasks in pipelines was
presented in [3]. To ensure that all tokens are processed in
the correct order, each token carries an associated sequence
number that specifies its position in the stream. If a task must
be executed in-order, the tokens are reordered according to
their sequence numbers. A similar approach is implemented
in TBB [4]. As in [3], however, only linear pipelines are
supported. Hence, nonlinear structures must be linearized,
which increases the latency and complicates the implemen-
tation. The approach presented in this paper is closely related
to the tagged-token scheme proposed for executing programs
on dataflow computers [13], [14]. The basic idea of this
scheme is to attach to each token a tag that specifies the
context. The tags ensure that only tokens of the same context
are processed by an operation. However, the tagged-token
scheme does not provide any means to execute certain oper-
ations in-order, since they are assumed to be side-effect free.
Our approach is also inspired by Lamport’s logical clocks
that are used to order events in distributed systems [15].
Out-of-order execution has many other application areas. In
microprocessors, for example, out-of-order execution is used
to increase instruction throughput by resolving unnecessary
dependencies that stem from the sequential nature of the von
Neumann architecture [16].

The rest of this paper is organized as follows: In the next
section, we explain the foundations of our approach and
define the semantics of the basic actors. In Section III, we
describe a lock-free implementation that can be efficiently
executed on shared-memory systems. After that, we present
experimental results in Section IV. Finally, we conclude with
a summary and directions for future work (Section V).

II. FOUNDATIONS AND SEMANTICS

Dataflow process networks [5] can be viewed as a special
case of Kahn process networks (KPNs) [17]. A KPN consists
of a set of processes that communicate with each other
through unidirectional FIFO channels. Processes read and
write tokens from and to the channels, where each channel
is written to by exactly one process. KPNs are deterministic
under the following conditions [5], [17]: writing to a channel
is non-blocking, while reading from a channel is blocking,
i.e., a process that reads from an empty channel will stall
and can only continue when the channel contains at least
one token. Moreover, processes are not allowed to test
an input channel for emptiness, and each process must
be deterministic. KPNs lend themselves well for modeling
parallel systems, since their behavior does not depend on
computation or communication delays.

However, the blocking read condition may cause con-
siderable overhead for context switching in case a process
wants to read from an empty input channel. DPNs avoid
this overhead by replacing processes with actors that are
executed according to a predefined set of rules [5]. Thus,
instead of immediately scheduling a process, which may
block due to missing data, an actor is not scheduled until
all data is available.1 To be able to perform certain opera-
tions out-of-order, we assume that the actors communicate
with each other through unordered buffers instead of FIFO
channels. Hence, actors that must be executed in-order have
to reconstruct the original order using the tokens’ indices.
Before we go into detail, however, we need a precise notion
of tokens and streams.

Definition 1: A token of type T is a triple 〈x, i, j〉 ∈
T×N×N0 with j < i, where x is the value of the token, i is
the token’s index, and j is the index of the predecessor token.
The set of all tokens of type T is denoted by TT . Given a
token t = 〈x, i, j〉, we define idx(t) = i and idx−1(t) = j.
Two tokens t1, t2 ∈ TT are connected, written t1  t2, iff
idx(t1) = idx−1(t2) holds. In this case, t2 is a successor of
t1, and t1 is a predecessor of t2.

It should be emphasized that a token value need not nec-
essarily be a scalar value; it may also be a compound data
structure or a collection such as a vector or a matrix. Hence,
a single token may represent a complex object like a network
packet or a video frame.

Definition 2: A stream S : N → TT is an infinite2 se-
quence of tokens of type T . A stream S is well-formed iff it
contains exactly one token without predecessor and all other
tokens have exactly one predecessor. Moreover, every token
must have exactly one successor:
• ∃n ∈ N.idx−1(S(n)) = 0 ∧ ¬∃n′ ∈ N.n′ 6= n ∧

idx−1(S(n′)) = 0
• ∀m ∈ N.idx−1(S(m)) 6= 0→ (∃n ∈ N.S(n) 

S(m) ∧ ¬∃n′ ∈ N.n′ 6= n ∧ S(n′) S(m))
• ∀m ∈ N.∃n ∈ N.S(m) S(n) ∧ ¬∃n′ ∈ N.n′ 6= n ∧

S(m) S(n′)

A stream S is ordered iff the tokens occur in their original
order:
• idx−1(S(1)) = 0 ∧ ∀n ∈ N.→ S(n) S(n+ 1)

Note that every ordered stream is well-formed, but not vice
versa. Finally, two streams S1 and S2 are compatible iff the
token indices are consistent:
• ∀n1, n2 ∈ N.idx(S1(n1)) = idx(S2(n2))→

idx−1(S1(n1)) = idx−1(S2(n2))

1For similar reasons, many libraries and language extensions for parallel
programming such as TBB [4], OpenMP [18], [19], and Cilk [20] avoid
blocking operations and perform synchronization at the level of lightweight
tasks, which are scheduled among a set of worker threads.

2Since we are mainly concerned with non-terminating (reactive) systems,
we focus on infinite streams. Nevertheless, our approach can also be applied
to finite streams, e.g., file streams.



For example, a stream S with S(1) = 〈x1, 1, 0〉, S(2) =
〈x2, 3, 1〉, and S(3) = 〈x3, 2, 1〉 is not well-formed since
S(2) and S(3) have the same predecessor. A stream S with
S(1) = 〈x1, 1, 0〉, S(2) = 〈x2, 3, 2〉, and S(3) = 〈x3, 2, 1〉
is well-formed, provided that the remaining part is well-
formed. However, it is not ordered since S(2) 6 S(3). If
S(2) and S(3) are swapped, the resulting stream is ordered,
provided that the remaining part is ordered. Two streams S1

and S2 with S1(1) = 〈x1, 2, 1〉 and S2(1) = 〈y1, 2, 0〉 are
not compatible, since idx−1(S1(1)) 6= idx−1(S2(1)).

The semantics of our actors is given by the transition rules
depicted in Figure 1. Besides parallel and serial functions,
we also consider switches and selectors, which are used
to control the dataflow in a DPN (see [13], [21], [22] for
a description of different kinds of operations in dataflow
computing). The left-hand side of a rule shows the state
before an actor is executed and the right-hand side the state
after execution. As can be seen from Figure 1, a parallel
function is ready for execution if all incoming tokens have
the same indices i and j. Since several instances of a
parallel function may be executed simultaneously, execution
of a new instance may start before any previous invocations
are completed. If the runtime of the function depends on
the input data, the outgoing stream may be unordered.
However, since the resulting tokens have the same indices
as the incoming tokens, the outgoing stream is well-formed,
provided that the incoming streams are well-formed.

Serial functions store the index of the previously pro-
cessed tokens to ensure that subsequent tokens are processed
in the correct order (as indicated in Figure 1, the stored index
is initialized to zero). A serial function is thus only executed
if the incoming tokens have the same indices i and j and if
j equals the stored index. After execution, the index of the
previously processed token is set to i. It is easy to see that
the outgoing stream is ordered, provided that the incoming
streams are well-formed (if they are not well-formed, a serial
function might block, since there might never be a token
〈x, i, j〉 such that j is equal to the stored index).

The switch actor consumes two tokens: a control token
carrying a Boolean value and a data token. Depending on
the value of the control token, the data token is sent either
to the true (left) or the false (right) output. Similar to
serial functions, switches store the indices of the previously
processed tokens. In Figure 1, these indices are denoted by k
and l (both are initialized to zero). A switch actor is enabled
if the indices of the incoming tokens match and the index
j of the previous token equals the maximum of the stored
indices k and l. After execution, the index of the token last
sent to the true or false output is set to i. Again, the outgoing
stream is ordered, provided that the incoming streams are
well-formed. Note that switches must be executed in-order,
since processing tokens out-of-order would require to know
in advance which tokens will be sent to either output in order
to determine the index of the previous token.

Finally, the select actor merges two streams which—in
case of a conditional—may be generated by a switch actor.
Depending on the Boolean value of the token at the control
input, the select actor transfers a token from either the true
or the false input to the output (no token is consumed from
the other input). Note that the indices of the previous tokens
need not match, since the control input and the data inputs
refer to different streams. Hence, a selector is enabled if the
incoming tokens have the same index i. Unlike switches,
selectors may be executed out-of-order (the outgoing stream
is well-formed if the control stream is well-formed).

So far, we only considered actors that both consume
and produce tokens. In addition, we need sources that only
produce tokens and sinks that only consume tokens. Sources
can be implemented by means of serial functions without
inputs, where the stored index serves as a counter that is
incremented after each execution. Hence, a source produces
a stream S of tokens such that S(1) S(2) S(3) . . .
Sinks are simply serial or parallel functions without output.
Thus, sinks may be executed out-of-order, whereas sources
are always executed in-order.

As an example, Figure 2 shows the execution of a DPN
using our approach. We assume that the switch as well as
the selector each requires one time unit to execute, and that
the functions f , g, and h require 6, 1, and 4 time units to
execute, respectively. Initially, there are the tokens 〈x, 1, 0〉
and 〈y, 2, 1〉 at the data input of the switch, and the tokens
〈T, 1, 0〉 and 〈F, 2, 1〉 at the control inputs of the switch
and the selector. First, the tokens 〈x, 1, 0〉 and 〈y, 2, 1〉 are
transferred to the true and the false branch of the conditional,
respectively. At time t = 2, the functions f and g start to
execute. Since g only requires one unit of time to complete,
the result 〈g(y), 2, 0〉 is available at time t = 3. It can be
immediately processed out-of-order by the selector and need
not wait until function f is completed. Hence, at time t =
4 function h starts to process the token 〈g(y), 2, 1〉, and
at time t = 8 it starts to process the token 〈f(x), 1, 0〉.
Execution ends at time t = 12 when both executions of
h are completed. Figure 3 shows a possible schedule on
a dual-core processor, where hatched areas represent idle
times. Conventional in-order execution of the DPN depicted
in Figure 2 would require a total of 16 time units to complete
(the amount of idle time would increase from 5 to 13 time
units on a dual-core processor). For this example, we thus
achieve a performance improvement of 25%.

III. IMPLEMENTATION

In this section, we present an implementation of our
approach that does not rely on locks to ensure mutual
exclusion between concurrent threads. Lock-free algorithms
have several advantages over conventional lock-based ap-
proaches [23]: Firstly, there is no need to perform a context
switch by the operating system, which may significantly hurt
performance, if a shared resource is used by another thread.
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T F ⇒
〈F, i, k〉

〈x, i, j〉
T F

〈x, i, k〉

Figure 1. Transition rules for basic actors in dataflow process networks

Secondly, they have the potential to prevent synchronization
pathologies such as deadlocks, convoying, and priority inver-
sion (system-wide progress is guaranteed). Thirdly, lock-free
algorithms can be efficiently executed using task schedulers
for non-preemptive, lightweight tasks.

The algorithms given in the following can be implemented
on shared-memory systems that support the compare-and-
swap operation (CAS) [23], [24] and atomic incrementation
of integers. They are given in a simple object-oriented
language, where objects are always accessed through ref-
erences. For the sake of brevity, we restrict ourselves to
functions3 and assume that the incoming streams are com-
patible (an error message should be emitted if tokens from
incompatible streams are to be processed).

Figure 4 shows some basic classes that are used by the
algorithms in Figures 5 and 6. The definition of the class
Token follows directly from Def. 1, where T is the type
of the token value. The class Actor, which serves as base
class for the actors of a DPN, contains a list of pairs that
specify the successors of an actor (the first element is a
reference to the actor, and the second element specifies the
channel). If an actor wants to send a token to another actor,
it calls the target actor’s receive method, which stores the
received token in a buffer according to the specified channel.
As we will see later, token matching is performed via hash
tables. For that purpose, the values of tokens having the

3The implementation of switches, which are executed in-order, is similar
to the implementation of serial functions, and the implementation of selec-
tors, which may be executed out-of-order, is similar to the implementation
of parallel functions.

same index are grouped into tuples and stored in objects of
the class ParallelEntry (from which SerialEntry is derived).
Additionally, the class ParallelEntry contains a counter that
keeps track of the number of tokens received for a given
index (the counter is initialized to zero). For efficiency
reasons, we store in each object of the class SerialEntry the
index of the successor tokens, if already available. Initially,
it contains the value zero, which means that no successor
token has yet arrived. If it is not equal to zero, the successor
tokens can be processed right after the current invocation has
finished execution (see below).

Let us now consider Figure 5, which shows the imple-
mentation of parallel functions. The hash map declared in
line 2 stores for each index an associated object of the class
ParallelEntry (lock-free implementations of hash maps are
described, e.g., in [23], [25]). The method run, which must
be defined in a subclass of ParallelFunction, executes the
actual user-defined code. The main part is contained in the
method receive: As the first step, the algorithm searches4 the
hash map for an entry with index idx (line 6) and stores the
value of the received token in the associated tuple (line 7).
Additionally, the counter is incremented by one (line 8). If
the tuple is complete, i.e., all tokens with index idx have
arrived, the user-defined code is executed (line 9) and the
result is sent to the successors (lines 10–11). In order to
run the successors in parallel, a new task is created for
each successor using the spawn statement (execution of

4The call map.insert(idx,ParallelEntry()) inserts an empty entry into
the hash map if no entry with index idx was found, and returns a reference
to the new entry. Otherwise, a reference to the existing entry is returned.
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Figure 2. Out-of-order execution of a dataflow process network containing a conditional
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class Token {
T val;
int idx, pidx;

}

class Actor {
List〈Actor, int〉 successors;
pure virtual void receive(Token token, int channel);

}

class ParallelEntry {
Tuple〈T1, . . . , Tn〉 tuple;
int counter(0);

}

class SerialEntry : ParallelEntry {
int succ(0);

}

Figure 4. Basic classes for the algorithms in Figures 5 and 6

the current task continues immediately after a new task has
been spawned). Finally, the entry with index idx is removed
from the hash map (line 12). Note that multiple tasks may
simultaneously call the method receive. For this reason,
incrementation of the counter must be done atomically.

1 class ParallelFunction : Actor {
2 LockFreeHashMap〈int,ParallelEntry〉 map;
3 pure virtual R run(Tuple〈T1, . . . , Tn〉 tuple);
4 void receive(Token token, int channel) {
5 (idx, pidx)← (token.idx, token.pidx);
6 entry← map.insert(idx,ParallelEntry());
7 entry.tuple.set(channel, token.val);
8 if (entry.counter.atomic inc() = n) {
9 res← Token(run(entry.tuple), idx, pidx);

10 for each (actor, channel) in successors
11 spawn actor.receive(channel, res);
12 map.remove(idx);
13 }
14 }
15 }

Figure 5. Lock-free implementation of parallel functions

The implementation of serial functions is shown in Fig-
ure 6. As described in Section II, we have to store the index
of the previously processed token (line 2) to ensure that
all tokens are processed in the correct order. The method
receive first updates the hash map (lines 7–8) and checks
whether the tuple of token values is complete (line 9). If so,
there are two cases to distinguish depending on whether the
tokens arrived in-order or out-of-order:

If index equals the previous token’s index pidx (line 11),
the algorithm starts to process the tokens with index idx. As
the first step, however, the entry of the previously processed
tokens is removed from the hash map (line 13). In contrast to
parallel functions, an entry cannot be removed immediately
after a tuple has been processed, since another task may
concurrently update the variable succ. After that, the user-
defined code is executed (line 14) and the result is sent to
the successor actors (lines 15–16). If the successor tuple is
already complete (curr.succ 6= 0, line 17), the task updates
the variables identifying the current context (lines 19-20)
and starts over (line 12). Otherwise, curr.succ is set to −1
by the CAS operation indicating that the successor tuple will
not be processed by the current task, and the variable index
is updated to the current index.

In case index is not equal to the previous token’s index
pidx, the algorithm inserts a new entry for the previous token
into the hash map, provided that it does not already exist
(line 25). Then, it tries to update the variable succ using
the CAS operation (line 26): If succ is zero, it is set to
the current index and the task terminates (the tuple will be
processed by another task once the predecessor tuple has
been processed). Otherwise, the task starts over and retries
to process the current tuple. It is easy to see that the outer
loop (lines 10–29) is always aborted after a finite number
of iterations: If succ is not zero in line 26, it must be −1.
In this case, the inner loop (lines 12–21) will be aborted
and index will be set to idx. Consequently, the condition of
the if statement in line 11 will be satisfied in one of the
following iterations of the outer loop, and the control flow
will eventually reach the break statement in line 23. The
number of iterations of the outer loop is thus bounded by
the time that is required by the task processing the current
token to get from line 18 to line 23.

IV. EXPERIMENTAL RESULTS

We implemented the presented algorithms in a C++ library
that allows software developers to easily parallelize stream-
ing applications. For efficiency reasons, most of the classes
and functions are implemented using templates. This also
facilitates type safety: connecting the output of an actor to an
input of a different type results in a compile-time error. The
library supports both in-place and out-of-place operations.5

The library’s memory management automatically allocates
and deallocates space depending on the type of operation
(in-place vs. out-of-place), the size of the token value, and
the structure of the DPN.6

5An in-place operation modifies the incoming value, whereas an out-
of-place operation writes the result to a new memory location. In image
processing, for example, in-place operations are more efficient than out-of-
place operations if only a subarea of an image is processed.

6As embedded systems often have tight restrictions on memory consump-
tion, the maximum number of tokens in flight and the size of the hash tables
can be set to a fixed value. Additionally, the token indices are mapped to
integers with a finite bit width (overflows are handled explicitly).



1 class SerialFunction : Actor {
2 int index(0);
3 LockFreeHashMap〈int,SerialEntry〉 map;
4 pure virtual R run(Tuple〈T1, . . . , Tn〉 tuple);
5 void receive(Token token, int channel) {
6 (idx, pidx)← (token.idx, token.pidx);
7 curr← map.insert(idx,SerialEntry());
8 curr.tuple.set(channel, token.val);
9 if (curr.counter.atomic inc() = n) {

10 while (true) {
11 if (index.load() = pidx) {
12 while (true) {
13 map.remove(pidx);
14 res← Token(run(curr.tuple), idx, pidx);
15 for each (actor, channel) in successors
16 spawn actor.receive(channel, res);
17 if (curr.succ.compare and swap(0, –1))
18 break;
19 (idx, pidx)← (curr.succ.load(), idx);
20 curr← map.find(idx);
21 }
22 index.store(idx);
23 break;
24 } else {
25 pred← map.insert(pidx,SerialEntry());
26 if (pred.succ.compare and swap(0, idx))
27 break;
28 }
29 }
30 }
31 }
32 }

Figure 6. Lock-free implementation of serial functions

To evaluate our approach, we have parallelized an image
recognition application developed at Siemens for industrial
automation. The application takes an image from a camera
and performs a number of image processing steps until
the considered object is recognized. The image processing
steps range from simple local filters to complex operations
such as the computation of connected components or image
compression. Additionally, we parallelized the application
using Intel’s TBB. In order to obtain comparable results, we
employed the task scheduler provided by TBB, which dy-
namically schedules tasks among a fixed number of worker
threads created during initialization [4]. Moreover, we used
the same kinds of operations (in-place vs. out-of-place). The
experiments were performed on a system with two quad-core
Xeon processors (2.83 GHz) and 6 GB RAM running Linux.

Table I shows the results. For each implementation, we
measured the average throughput (in frames per second)
and the maximum latency (in milliseconds) for processing

Table I
EXPERIMENTAL RESULTS

Cores Throughput [f/s] Speedup Latency [ms]
TBB DPN TBB DPN TBB DPN

1 13.0 13.1 1.0 1.0 81 79

2 25.0 24.7 1.9 1.9 116 117

3 36.2 36.2 2.8 2.8 130 114

4 47.0 45.8 3.6 3.5 141 124

5 54.8 52.2 4.2 4.0 153 134

6 59.4 58.2 4.6 4.5 225 139

7 63.3 62.5 4.9 4.8 261 156

8 68.8 66.4 5.3 5.2 263 158

500 frames on one to eight cores. Moreover, we calculated
the relative speedup with respect to the original sequential
implementation.

As can be seen from Table I, both implementations per-
form comparably well in terms of throughput. On four cores
the speedup is 3.6 (TBB) and 3.5 (DPN), which is close to
the theoretical maximum. On five to eight cores the speedup
levels off slightly, which indicates that the sequential parts
increasingly become a bottleneck. Interestingly, the overhead
of the parallel implementations is negligible compared to the
sequential one (speedup of 1.0 on a single core). Regarding
the latency, our approach performs significantly better than
TBB. On eight cores, the latency is reduced from 263ms to
158ms, which corresponds to a reduction of 40%. This is
mainly because our approach supports nonlinear structures,
whereas TBB is limited to linear pipelines.

V. SUMMARY AND CONCLUSION

We presented a method and a lock-free implementation
for combined in-order and out-of-order execution of dataflow
process networks. In contrast to conventional pipeline-based
approaches, which are frequently employed for the par-
allel execution of streaming applications, DPNs do not
require linearization of nonlinear structures and support
conditional execution. As another advantage, DPNs provide
a deterministic programming model, which is often essential
in the development of safety-critical embedded systems.
Moreover, the developer is relieved from the burden of
thread synchronization, since access to shared memory areas
(communication channels) is hidden in the actors.

Using our approach, the externally visible behavior of
systems that continuously interact with their environment is
preserved, even though some tasks might be executed out-of-
order. Out-of-order execution is important in the presence of
conditionals, because the points of time at which the tokens
arrive at the end of a conditional may vary significantly. In
this way, idle times of the processor cores are cut down,
which increases performance and reduces energy consump-
tion. This is due to the fact that most frameworks for parallel



programming try to avoid time consuming context switches
by the operating system in case a core is idle. As a result,
idle cores are busy waiting and cannot be used by other
threads (or put into power saving mode).

Our method does not maintain any global data structures
that may result in a bottleneck and limit scalability. The
transformation of token indices is accomplished in a dis-
tributed manner and causes little overhead, since only two
integers are required to represent the indices. Moreover,
conditionals can be nested without the need for additional
data structures such as stacks that keep track of the nesting
depth. Our experimental results indicate that the proposed
implementation can compete with state-of-the-art libraries
such as TBB in terms of throughput, while significantly
reducing the latency.

To achieve a further reduction of the latency, we plan
to develop a scheduler that supports task priorities. One
of the problems with current task schedulers is that there
is little control over the order in which ready tasks are
executed. This may lead to undesirable behavior in stream-
based applications. If, for example, a source actor is much
faster than its successors, it may happen that the system is
flooded with tokens entering the DPN, while other actors
starve and hinder older tokens to leave the DPN. Using task
priorities it can be guaranteed that the tokens in flight are
processed before new ones enter the DPN.
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versità di Pisa, Dipartimento di Informatica, Italy, Tech. Rep.
TR-09-12, Sep. 2009.

[13] Arvind and K. Gostelow, “The U-interpreter,” IEEE Com-
puter, vol. 15, no. 2, pp. 42–49, 1982.

[14] Arvind and R. Nikhil, “Executing a program on the MIT
tagged-token dataflow architecture,” IEEE Transactions on
Computers, vol. 39, no. 3, pp. 300–318, March 1990.

[15] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, July 1978.

[16] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, 4th ed. Morgan Kaufmann, 2006.

[17] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information Processing, J. Rosenfeld, Ed.
Stockholm, Sweden: North Holland, 1974, pp. 471–475.

[18] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming. MIT Press,
2008.

[19] OpenMP Application Program Interface (Ver. 3.0), OpenMP
Architecture Review Board, 2008.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” in Symposium on Principles and Practice of
Parallel Programming (PPoPP). Santa Barbara, CA, USA:
ACM, 1995, pp. 207–216.

[21] A. Davis and R. Keller, “Data flow program graphs,” IEEE
Computer, vol. 15, no. 2, pp. 26–41, February 1982.

[22] J. Dennis, “First version of a data-flow procedure language,”
in Programming Symposium, ser. LNCS, B. Robinet, Ed.,
vol. 19. Paris, France: Springer, 1974, pp. 362–376.

[23] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. Elsevier, 2008.

[24] M. Herlihy, “Wait-free synchronization,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 13,
no. 1, pp. 124–149, January 1991.

[25] M. M. Michael, “High performance dynamic lock-free hash
tables and list-based sets,” in Symposium on Parallel Algo-
rithms and Architectures (SPAA). Winnipeg, Canada: ACM,
2002, pp. 73–82.


	D5.2.B.pdf
	PID1547417

